Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 6: 31927, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535087

ABSTRACT

Humans benefit from extensive cooperation; however, the existence of free-riders may cause cooperation to collapse. This is called the social dilemma. It has been shown that punishing free-riders is an effective way of resolving this problem. Because punishment is costly, this gives rise to the second-order social dilemma. Without exception, existing solutions rely on some stringent assumptions. This paper proposes, under very mild conditions, a simple model of a public goods game featuring increasing returns to scale. We find that punishers stand out and even dominate the population provided that the degree of increasing returns to scale is large enough; consequently, the second-order social dilemma dissipates. Historical evidence shows that people are more willing to cooperate with others and punish defectors when they suffer from either internal or external menaces. During the prehistoric age, the abundance of contributors was decisive in joint endeavours such as fighting floods, defending territory, and hunting. These situations serve as favourable examples of public goods games in which the degrees of increasing returns to scale are undoubtedly very large. Our findings show that natural selection has endowed human kind with a tendency to pursue justice and punish defection that deviates from social norms.


Subject(s)
Cooperative Behavior , Punishment , Computer Simulation , Game Theory , Humans , Selection, Genetic , Social Behavior , Social Justice
2.
Front Hum Neurosci ; 9: 659, 2015.
Article in English | MEDLINE | ID: mdl-26696868

ABSTRACT

Judgments about whether an action is morally right or wrong typically depend on our capacity to infer the actor's beliefs and the outcomes of the action. Prior neuroimaging studies have found that mental state (e.g., beliefs, intentions) attribution for moral judgment involves a complex neural network that includes the temporoparietal junction (TPJ). However, neuroimaging studies cannot demonstrate a direct causal relationship between the activity of this brain region and mental state attribution for moral judgment. In the current study, we used transcranial direct current stimulation (tDCS) to transiently alter neural activity in the TPJ. The participants were randomly assigned to one of three stimulation treatments (right anodal/left cathodal tDCS, left anodal/right cathodal tDCS, or sham stimulation). Each participant was required to complete two similar tasks of moral judgment before receiving tDCS and after receiving tDCS. We studied whether tDCS to the TPJ altered mental state attribution for moral judgment. The results indicated that restraining the activity of the right temporoparietal junction (RTPJ) or the left the temporoparietal junction (LTPJ) decreased the role of beliefs in moral judgments and led to an increase in the dependance of the participants' moral judgments on the action's consequences. We also found that the participants exhibited reduced reaction times both in the cases of intentional harms and attempted harms after receiving right cathodal/left anodal tDCS to the TPJ. These findings inform and extend the current neural models of moral judgment and moral development in typically developing people and in individuals with neurodevelopmental disorders such as autism.

3.
Neurosci Lett ; 598: 18-22, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25956033

ABSTRACT

Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks.


Subject(s)
Prefrontal Cortex/physiology , Risk-Taking , Transcranial Direct Current Stimulation , Adolescent , Adult , Female , Functional Laterality , Humans , Male , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL