Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 267, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609579

ABSTRACT

Microwave absorbing materials for high-temperature harsh environments are highly desirable for aerodynamically heated parts and engine combustion induced hot spots of aircrafts. This study reports ceramic composites with excellent and stable high-temperature microwave absorption in air, which are made of polymer-derived SiOC reinforced with core-shell nanophase structure of ZrB2/ZrO2. The fabricated ceramic composites have a crystallized t-ZrO2 interface between ZrB2 and SiOC domains. The ceramic composites exhibit stable dielectric properties, which are relatively insensitive to temperature change from room temperature to 900 °C. The return loss exceeds - 10 dB, especially between 28 and 40 GHz, at the elevated temperatures. The stable high-temperature electromagnetic (EM) absorption properties are attributed to the stable dielectric and electrical properties induced by the core-shell nanophase structure of ZrB2/ZrO2. Crystallized t-ZrO2 serve as nanoscale dielectric interfaces between ZrB2 and SiOC, which are favorable for EM wave introduction for enhancing polarization loss and absorption. Existence of t-ZrO2 interface also changes the temperature-dependent DC conductivity of ZrB2/SiOC ceramic composites when compared to that of ZrB2 and SiOC alone. Experimental results from thermomechanical, jet flow, thermal shock, and water vapor tests demonstrate that the developed ceramic composites have high stability in harsh environments, and can be used as high-temperature wide-band microwave absorbing structural materials.

2.
ACS Appl Mater Interfaces ; 12(52): 58005-58017, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33331159

ABSTRACT

Achieving a high electrical conductivity while maintaining a good thermal insulation is often contradictory in the material design for the goal of simultaneous thermal protection and electromagnetic interference shielding. The reason is that materials with a high electrical conductivity often pertain a high thermal conductivity. To address this challenge, this study reports a multifunctional ceramic composite system for carbon fiber-reinforced polymer composites. The fabricated multifunctional ceramic composite system has a multilayer structure. The polymer-derived SiCN ceramic reinforced with yttria-stabilized zirconia fibers serves as the thermal protection and impedance-matching layer, while the yttria-stabilized zirconia fiber-reinforced SiCN ceramic with carbon nanotubes provides the electromagnetic interference shielding. The thermal conductance of the multilayered ceramic composite is about 22.5% lower compared to that of the carbon fiber-reinforced polymer composites. The thermal insulation test during the steady-state condition shows that the hybrid composite can be used up to 300 °C while keeping the temperature reaching the surface of carbon fiber-reinforced polymer composites at around 167.8 °C. The flame test was used to characterize the thermal protection capability under transient conditions. The hybrid composite showed temperature differences of 72.9 and 280.7 °C during the low- and high-temperature settings, respectively. The average total shielding efficiency per thickness of the fabricated four-layered ceramic composite system was 21.45 dB/mm, which showed a high reflection-dominant electromagnetic interference shielding. The average total shielding efficiency per thickness of the eight-layered composite system was 16.57 dB/mm, revealing a high absorption-dominant electromagnetic interference shielding. Typical carbon fiber-reinforced polymer composites reveal a reflection-dominant electromagnetic interference shielding. The electrons can freely move in the percolated carbon nanotubes within the inner layers of the composite material, which provide the improved electromagnetic interference shielding ability. The movement of electrons was impeded by the top and bottom layers whose thermal conduction relies on the lattice vibrations, resulting in a satisfactory thermal insulation of the composite materials and impedance matching with the free space. Results of this study showed that materials with a good thermal insulation and electromagnetic interference shielding can be obtained simultaneously by confining the electron movement inside the materials and refraining their movement at the skin surface.

3.
ACS Appl Mater Interfaces ; 12(41): 46254-46266, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32965104

ABSTRACT

High-performance electromagnetic interference (EMI) shielding materials for a high-temperature harsh environment are highly required for electronics and aerospace applications. Here, a composite made of ultrahigh-temperature ceramic- and polymer-derived SiOC ceramic (PDC-SiOC) with high EMI shielding was reported for such applications. A total EMI shielding efficiency (SET) of 26.67 dB with a thickness of 0.6 mm at the Ka-band (26.5-40 GHz) was reported for ZrB2 fabricated by spark plasma sintering, which showed reflection-dominant shielding. A unique interface of t-ZrO2 was formed after the introduction of PDC-SiOC into ZrB2. This interface has better electrical conductivity than SiOC. The composites also displayed reflection-dominant shielding. Accordingly, the composite with a normalized ZrB2 fraction of 50% pyrolyzed at 1000 °C exhibited a significant SET of 72 dB (over 99.99999% shielded) with a thickness of 3 mm at the entire Ka-band. A maximum SET of 90.8 dB (over 99.9999999% shielded) was achieved with a thickness of 3 mm at around 39.7 GHz.

4.
ACS Appl Mater Interfaces ; 11(49): 45862-45874, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31726006

ABSTRACT

Microwave-absorbing materials in a high-temperature harsh environment are highly desired for electronics and aerospace applications. This study reports a novel high-temperature microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramic (UHTC) ZrB2 nanoparticles. The fabricated composites with a normalized weight fraction of ZrB2 nanoparticles at 40% has a significantly wide microwave absorption bandwidth of 13.5 GHz (26.5-40 GHz) covering the entire Ka-band. This is attributed to the extensive nanointerfaces introduced in the composites, attenuation induced by the interference of electromagnetic wave, attenuation from the formed current loops, and the electronic conduction loss provided by the partially surface-oxidized ZrB2 nanoparticles. The minimum reflection coefficient (RC) was -29.30 dB at 29.47 GHz for a thickness of 1.26 mm for the composites with a normalized weight fraction of ZrB2 nanoparticles at 32.5%. The direct current (dc) conductivity of the nanocomposites showed a clear percolation phenomenon as the normalized weight fraction of ZrB2 nanoparticles increases to 30.49%. The results provide new insights in designing microwave-absorbing materials with a wide absorption frequency range and strong absorption loss for high-temperature harsh environment applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...