Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(35): 41426-41437, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37612260

ABSTRACT

Nonstoichiometric compounds are widely used in contemporary energy technologies due to their high surface polarity, tailored electronic structure, high electrical conductivity, and other enhanced properties. However, the preparation of such nonstoichiometric compounds can be complicated and, in some cases, uncontrollable and dangerous. Here, we report a "one-pot" strategy for synthesizing N-doped porous graphitic carbon that is hybridized with nonstoichiometric scandium oxide (denoted as ScO0.95@N-PGC) and show that the composite significantly promotes sulfur cathode kinetics in lithium-sulfur (Li-S) batteries. The synthesis of the ScO0.95@N-PGC composite entails heating a porous dry gel that consists of a C source (glucose), a N source (dicyandiamide), and a Sc source (Sc(NO3)3·H2O). Thermally decomposing the dicyandiamide creates a highly reductive atmosphere that simultaneously affords the hypoxic state of the ScO0.95 and dopes the carbon matrix with nitrogen. Density functional theory reveals the presence of oxygen vacancies that enable the ScO0.95 crystals to function as excellent electrical conductors, exhibit enhanced adsorption toward polysulfides, and accelerate the cathode reactions by lowering the corresponding activation energies. Moreover, Li-S cells prepared from the ScO0.95@N-PGC composite display a high specific capacity (1046 mA h g-1 at 0.5 C), an outstanding cycling stability (641 mA h g-1 after 1000 charge-discharge cycles at 0.5 C, a capacity decay of 0.038% per cycle), and a particularly outstanding rate capability (438 mA h g-1 at 8 C). The methodology described establishes a sustainable approach for synthesizing nonstoichiometric compounds while broadening their potential utility in a broad range of energy technologies.

2.
Small ; 19(47): e2303919, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37488691

ABSTRACT

Lithium-sulfur (Li-S) batteries hold great promise for widespread application on account of their high theoretical energy density (2600 Wh kg-1 ) and the advantages of sulfur. Practical use, however, is impeded by the shuttle effect of polysulfides along with sluggish cathode kinetics. it is reported that such deleterious issues can be overcome by using a composite film (denoted as V-CMP@MWNT) that consists of a conjugated microporous polymer (CMP) embedded with vanadium single-atom catalysts (V SACs) and a network of multi-walled carbon nanotubes (MWNTs). V-CMP@MWNT films are fabricated by first electropolymerizing a bidentate ligand designed to coordinate to V metals on self-standing MWNT films followed by treating the CMP with a solution containing V ions. Li-S cells containing a V-CMP@MWNT film as interlayer exhibit outstanding performance metrics including a high cycling stability (616 mA h g-1 at 0.5 C after 1000 cycles) and rate capability (804 mA h g-1 at 10 C). An extraordinary area-specific capacity of 13.2 mA h cm-2 is also measured at a high sulfur loading of 12.2 mg cm-2 . The underlying mechanism that enables the V SACs to promote cathode kinetics and suppress the shuttle effect is elucidated through a series of electrochemical and spectroscopic techniques.

3.
Angew Chem Int Ed Engl ; 62(24): e202301940, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37071485

ABSTRACT

Despite significant progress in the preparation and characterization of two-dimensional (2D) materials, the synthesis of 2D organic materials remains challenging. Here, we report a novel space-confined polymerization method that enables the large-scale synthesis of 2D sheets of a functional conjugated polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT). A key step in this method is the confinement of monomer to the boundaries of ice crystals using micelles. This spatial confinement directs the polymerization to form 2D PEDOT sheets with high crystallinity and controlled morphology. Supercapacitors prepared from the 2D PEDOT sheets exhibit outstanding performance metrics. In aqueous electrolyte, a high areal specific capacitance of 898 mF cm-2 at 0.2 mA cm-2 along with an excellent rate capability is achieved (e.g., capacitance retention of 67.6 % at a 50-fold higher current). Moreover, the 2D PEDOT-based supercapacitors exhibit outstanding cycling stability (capacitance retention of 98.5 % after 30,000 cycles). Device performance is further improved when an organic electrolyte is used.

4.
ACS Appl Mater Interfaces ; 15(9): 11713-11722, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36802456

ABSTRACT

Red phosphorus (RP) is a promising anode material for use in lithium-ion batteries (LIBs) due to its high theoretical specific capacity (2596 mA h g-1). However, the practical use of RP-based anodes has been challenged by the material's low intrinsic electrical conductivity and poor structural stability during lithiation. Here, we describe a phosphorus-doped porous carbon (P-PC) and disclose how the dopant improves the Li storage performance of RP that was incorporated into the P-PC (designated as RP@P-PC). P-doping porous carbon was achieved using an in situ method wherein the heteroatom was added as the porous carbon was being formed. The phosphorus dopant effectively improves the interfacial properties of the carbon matrix as subsequent RP infusion results in high loadings, small particle sizes, and uniform distribution. In half-cells, an RP@P-PC composite was found to exhibit outstanding performance in terms of the ability to store and utilize Li. The device delivered a high specific capacitance and rate capability (1848 and 1111 mA h g-1 at 0.1 and 10.0 A g-1, respectively) as well as excellent cycling stability (1022 mA h g-1 after 800 cycles at 2.0 A g-1). Exceptional performance metrics were also measured when the RP@P-PC was used as an anode material in full cells that contained lithium iron phosphate as the cathode material. The methodology described can be extended to the preparation of other P-doped carbon materials that are employed in contemporary energy storage applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...