Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2404446, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837518

ABSTRACT

Superstructures with complex hierarchical spatial configurations exhibit broader structural depth than single hierarchical structures and the associated broader application prospects. However, current preparation methods are greatly constrained by cumbersome steps and harsh conditions. Here, for the first time, a concise and efficient thermally responsive dynamic synthesis strategy for the preparation of multidimensional complex superstructures within soluble covalent organic networks (SCONs) with tunable morphology from 0D hollow supraparticles to 2D films is presented. Mechanism study reveals the thermally responsive dynamic "cleavage-remodeling" characteristics of SCONs, synthesized based on the unique bilayer structure of (2.2)paracyclophane, and the temperature control facilitates the process from reversible solubility to reorganization and construction of superstructures. Specifically, during the process, the oil-water-emulsion two-phase interface can be generated through droplet jetting, leading to the preparation of 0D hollow supraparticles and other bowl-like complex superstructures with high yield. Additionally, by modulating the volatility and solubility of exogenous solvents, defect-free 2D films are prepared relying on an air-liquid interface. Expanded experiments further confirm the generalizability and scalability of the proposed dynamic "cleavage-remodeling" strategy. Research on the enrichment mechanism of guest iodine highlights the superior kinetic mass transfer performance of superstructural products compared to single-hierarchical materials.

2.
Nat Commun ; 15(1): 3896, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719899

ABSTRACT

As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.

3.
ACS Macro Lett ; 12(9): 1237-1243, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37638609

ABSTRACT

The majority of COFs synthesized using current methods exist as insoluble powders, which is unfavorable for processing and molding and greatly limits their practical applications. The syntheses of solution-processable or soluble COFs are challenging but hold immense promise and potential. Herein, for the first time, we have developed a simple and high-efficiency solvothermal-treated unit exchange approach to convert insoluble COF powders into smaller, highly soluble COFs via a hydrogen bond-assisted strategy. Due to the enhanced backbone-solvent hydrogen-bonding interactions between COFs and protic solvents and the effect of grain size reduction, the COFs after unit exchange can be easily dissolved in various protic solvents while remaining as insoluble powders in nonprotic solvents. The obtained soluble COFs exhibit remarkable fluorescence quenching upon detection of iodine in aqueous solution, with a detection limit as low as 75 nM, and can be fabricated into membranes for the efficient treatment of iodine-contaminated solutions.

4.
Small ; 19(43): e2303775, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37357162

ABSTRACT

The compatibility of crystallinity, stability, and functionality in covalent organic frameworks (COFs) is challenging but significant in reticular chemistry and materials science. Herein, it is presented for the first time a strategy to synthesize directly amino-functionalized COF with stable benzodiimidazole linkage by regioselective one-step cyclization and aromatization. Bandrowski's base with two types of amino groups is used as a unique monomer, providing not only construction sites for the material framework through specific region-selective reaction, but also amino active sites for functionality, which is usually difficult to achieve directly in COF synthesis because amino groups are the participants in COF bonding. In addition, the aromatic benzodiimidazole rings and the large conjugated system of the product effectively improve the crystallinity and stability, so that the as-prepared BBCOF remains unchanged in both acid and base solutions, which is obviously better than the conventional imine-linked COF. Impressively, the significantly enhanced conjugation degree by the benzodiimidazole structure also endows BBCOF with an efficient photocatalytic reduction of uranyl ion, with removal rate as high as 96.6% in single-ion system and 95% in multi-ion system. This study is of great importance to the design and synthesis of functional COFs with a commendable trade-off among crystallinity, stability, and functionality.

5.
Med Sci Educ ; 33(1): 247-254, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37008439

ABSTRACT

Medical curricula around the globe are diverse, accommodating the social, political, cultural, and health needs in each country. Every medical school has the responsibility to educate graduates capable of providing quality medical care to their communities. Yet true globalization of medical education is a challenge. Little is known about the intrinsic variations which impact curricula in countries around the world. There are unique, often historical reasons that explain the challenges in attaining a genuine globalization of the medical curricula. This perspective provides a glance and general comparison of traditions, economic, and socio-political influences on medical education across seven countries.

6.
ACS Appl Mater Interfaces ; 15(13): 16975-16983, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943036

ABSTRACT

Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.

7.
Sci Total Environ ; 870: 161886, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36731557

ABSTRACT

The construction of the Three Gorges Dam has altered the hydrology and increased the trapping of sediment in the reservoir. This has also changed the composition and export of particulate organic matter in the Yangtze River. To understand the seasonal variations and sources of organic matter in sediments, total organic carbon (TOC), total nitrogen (TN), δ13Corg and δ15N in surface sediment samples from the mainstream and tributaries of the Three Gorges Reservoir were measured in the summer (July) and winter (December) of 2017, respectively. The results showed that the concentrations of TOC and TN in the surface sediments of the Three Gorges Reservoir were 0.79 %-1.46 % and 0.07 %-0.13 %, respectively. The ranges of δ13Corg and δ15N were - 26.35 ‰ to-24.70 ‰ and 2.59 ‰ to 5.67 ‰, respectively. According to δ13Corg and the TOC/TN ratio, the source range of organic matter was determined, and the contributions of different organic matter sources were quantified using a Bayesian mixed model. The results showed that soil organic matter and river plankton were the main sources of surface sediment organic matter in summer, whereas soil organic matter and aquatic vascular plants were the main sources in winter. The source of organic matter is related to biological factors in summer, whereas it is mainly caused by hydrodynamic conditions in winter. The analysis of δ15N further reveals that there are obvious external pollutants in the Three Gorges Reservoir, mainly related to artificial nitrogen fertiliser and domestic sewage. This study highlights the influence that soil nitrogen loss may be an important reason for the impact of agricultural non-point source pollution in the reservoir area, showing seasonal differences which were mainly affected by rainfall in summer and controlled by impoundment in winter. Hence, fine nitrogen management is required to reduce pollution in the Three Gorges Reservoir.

8.
Nat Commun ; 13(1): 6798, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357421

ABSTRACT

Hydrogen is increasingly being discussed as clean energy for the goal of net-zero carbon emissions, applied in the proton-exchange-membrane fuel cells (PEMFC). The preferential oxidation of CO (PROX) in hydrogen is a promising solution for hydrogen purification to avoid catalysts from being poisoned by the trace amount of CO in hydrogen-rich fuel gas. Here, we report the fabrication of a novel bimetallic Pt-Fe catalyst with ultralow metal loading, in which fully-exposed Pt clusters bonded with neighbor atomically dispersed Fe atoms on the defective graphene surface. The fully-exposed PtFe cluster catalyst could achieve complete elimination of CO through PROX reaction and almost 100% CO selectivity, while maintaining good stability for a long period. It has the mass-specific activity of 6.19 (molCO)*(gPt)-1*h-1 at room temperature, which surpasses those reported in literatures. The exhaustive experimental results and theoretical calculations reveal that the construction of fully-exposed bimetallic Pt-Fe cluster catalysts with maximized atomic efficiency and abundant interfacial sites could facilitate oxygen activation on unsaturated Fe species and CO adsorption on electron-rich Pt clusters to hence the probability of CO oxidation, leading to excellent reactivity in practical applications.

9.
Adv Mater ; 34(20): e2110455, 2022 May.
Article in English | MEDLINE | ID: mdl-35305275

ABSTRACT

Selective hydrogenation of alkynes to alkenes plays a crucial role in the synthesis of fine chemicals. However, how to achieve high selectivity and effective separation of the catalyst and substrate while obtaining high activity is the key for this reaction. In this work, a Pd single-atom catalyst is anchored to the shell of magnetic core-shell particles that consist of a Ni-nanoparticles core and a graphene sheets shell (Ni@G) for semi-hydrogenation of phenylacetylene, delivering 93% selectivity to styrene at full conversion with a robust turnover frequency of 7074 h-1 under mild reaction conditions (303 K, 2 bar H2 ). Moreover, the catalyst can be recovered promptly from the liquid phase due to its magnetic separability, which makes it present good stability for enduring five cycles. Experimental and theoretical investigations reveal that H2 and substrates are activated by atomically dispersed Pd atoms and Ni@G hybrid support, respectively. The hydrogenation reaction occurs on the surface of Ni@G via hydrogen spillover from the metal to the support. Such a strategy opens an avenue for designing highly active, selective, and magnetically recyclable catalysts for selective hydrogenation in liquid reaction systems.

10.
J Am Chem Soc ; 144(8): 3535-3542, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35107999

ABSTRACT

Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.

11.
Chem Commun (Camb) ; 57(88): 11591-11603, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34657938

ABSTRACT

Atomically dispersed metal catalysts (ADMCs) have attracted increasing interest in the field of heterogeneous catalysis. As sub-nanometric catalysts, ADMCs have exhibited remarkable catalytic performance in many reactions. ADMCs are classified into two categories: single atom catalysts (SACs) and atomically dispersed clusters with a few atoms. To stabilize the highly active ADMCs, nanodiamond (ND) and its derivatives (NDDs) are promising supports. In this Feature Article, we have introduced the advantages of NDDs with a highly curved surface and tunable surface properties. The controllable defective sites and oxygen functional groups are known as the anchoring sites for ADMCs. Tunable surface acid-base properties enable ADMCs supported on NDDs to exhibit unique selectivity towards target products and an extended lifetime in many reactions. In addition, we have firstly overviewed the recent advances in the synthesis strategies for effectively fabricating ADMCs on NDDs, and further discussed how to achieve the atomic dispersion of metal precursors and stabilize the as-formed metal atoms against migration and agglomeration based on NDDs. And then, we have also systematically summarized the advantages of ADMCs supported on NDDs in reactions, including hydrogenation, dehydrogenation, aerobic oxidation and electrochemical reaction. These reactions can also effectively guide the design of ADMCs. The recent progress in understanding the effect of structure of active centers and metal-support interactions (MSIs) on the catalytic performance of ADMCs is particularly highlighted. At last, the possible research directions in ADMCs are forecasted.

13.
Nat Commun ; 12(1): 2664, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976155

ABSTRACT

Metal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure-performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.

14.
ACS Appl Mater Interfaces ; 13(1): 1127-1134, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33371663

ABSTRACT

Among various fission products generated in nuclear reactors, xenon and krypton are two important fission gases with high flow, diffusivity, and radioactivity. Moreover, xenon isolated from these products is an expensive industrial resource with wide applications in medicine and lighting, which makes the development of efficient methods for separation of xenon/krypton significant. However, it is usually difficult for xenon/krypton to be adsorbed by chemical adsorbents due to their inert gas properties, and sub-nanoporous adsorbents proven to be workable for the separation of xenon/krypton are still hard to prepare and regulate the pore size. Herein, we report two novel sub-nanoporous covalent organic frameworks (COFs), which were applied to the sieving of xenon/krypton for the first time. The sub-nanoporous COFs were synthesized via aldehyde-amine polycondensation reactions and the subsequent pore size regulation and homogenization process by using a facile, operational, and efficient multiple-site alkylation strategy. Impressively, the as-prepared sub-nanoporous COFs realized the efficient adsorption and sieving of xenon/krypton owing to their slightly larger pore sizes (∼7 Å) than the dynamic diameters of xenon/krypton and their larger pore volumes. The maximum adsorption capacity for xenon is up to 85.6 cm3/g, and the xenon/krypton selectivity can reach to 9.7. Moreover, the as-prepared COFs possess good γ-ray irradiation stability, which endows them with great potentials for the sieving of radioactive xenon/krypton in the practical application. The multiple-site alkylation strategy proposed in this study provides a valuable approach for the pore construction and control of the porous materials, especially the sub-nanoporous adsorption materials.

15.
J Hazard Mater ; 401: 123802, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33113739

ABSTRACT

Design and preparation of a kind of pore-free adsorbent with abundant active sites is favorable for fast separation of uranium. Here, a two-dimensional olefin-linked conjugated organic polymer was prepared via the Knoevenagel condensation reaction. The product owns good stability and excellent fluorescence property due to the fully conjugated skeleton. Moreover, owning to the high content of N atom, it shows excellent performance in adsorption and separation of uranium, and more importantly, it is constructed with nearly pore-free structure because of the irregular staggered stacking, which makes it exhibit fast adsorption behavior towards uranium. These results confirm the feasibility of pore-free material for fast adsorption.

16.
Nanoscale ; 12(47): 24044-24053, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33295920

ABSTRACT

The separation and recovery of key nuclides such as uranium and plutonium from effluents related to nuclear industry is of great significance for alleviating the shortage of nuclear energy resources and protecting the environment and human health. However, the high temperature, strong acidity and radioactivity of the nuclear effluents pose a severe challenge to the separation materials used in such conditions. The diversity of structure, flexibility of design, and excellent physicochemical stability of covalent organic framework materials (COFs) provide the possibility for the directional design and preparation of adsorbents for use under harsh conditions. Herein, three COFs with similar structure, different pore sizes and connecting modules were synthesized. The ingenious structure predesign enables Dp-COF to have three carboxyl groups oriented toward the pore center and laid out in appropriate spatial positions, which builds hydrogen-bonding bridges between carboxycarbonyl and hydroxyl groups, and thus constructs for the first time a unique COF material with a double-ring pore. The inner pore size of the "double-ring" is slightly larger than the diameter of uranyl hydrate, which leads to a size-matching adsorption of uranium by Dp-COF, thus greatly reducing the effect of protonation. Even in the simulated spent fuel reprocessing liquid with pH = 1.0, the adsorption capacity of Dp-COF for uranium can reach 66.3 mg g-1, and the adsorption capacity reaches 317.3 mg g-1 at pH = 4.5, which is very rare among the reported COFs. More excitingly, the removal rate for uranium reaches up to an unprecedented 99.8% due to the size-matching effect, more than any analogous adsorbents. This study not only proposes new ideas for the design and regulation of the microscopic configuration of COF materials, but also provides an alternative approach for the preparation of efficient uranium adsorbents.

17.
Angew Chem Int Ed Engl ; 59(10): 4168-4175, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31863631

ABSTRACT

We report the first example of 2D covalent organic framework nanosheets (Redox-COF1) for the selective reduction and in situ loading of valence-variable, redox-sensitive and long-lived radionuclides (abbreviated as VRL nuclides). Compared with sorbents based on chemical adsorption and physical adsorption, the redox adsorption mechanism of Redox-COF1 can effectively reduce the impact of functional group protonation under the usual high-acidity conditions in chemisorption, and raise the adsorption efficiency from the monotonous capture by pores in physisorption. The adsorption selectivity for UO2 2+ reaches up to unprecedented ca. 97 % at pH 3, more than for any analogous adsorbing material.

18.
J Am Chem Soc ; 141(48): 18921-18925, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31647665

ABSTRACT

Direct selective oxidation of light alkanes, such as ethane, into value-added chemical products under mild reaction conditions remains a challenge in both industry and academia. Herein, the iridium cluster and atomically dispersed iridium catalysts have been successfully fabricated using nanodiamond as support. The obtained iridium cluster catalyst shows remarkable performance for selective oxidation of ethane under oxygen at 100 °C, with an initial activity as high as 7.5 mol/mol/h and a selectivity to acetic acid higher than 70% after five in situ recycles. The presence of CO in the reaction feed is pivotal for the excellent reaction performance. On the basis of X-ray photoelectron spectroscopy (XPS) analysis, the critical role of CO was revealed, which is to maintain the metallic state of reactive Ir species during the oxidation cycles.

19.
Nat Commun ; 10(1): 4431, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31570716

ABSTRACT

The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamond-graphene (ND@G), which exhibits excellent catalytic performance for the selective conversion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored over graphene through Cu-C bonds ensures the effective activation of acetylene and easy desorption of ethylene, which is the key for the outstanding activity and selectivity of the catalyst.

20.
J Am Chem Soc ; 140(41): 13142-13146, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30247031

ABSTRACT

We reported here a strategy to use a defective nanodiamond-graphene (ND@G) to prepare an atomically dispersed metal catalyst, i.e., in the current case atomically dispersed palladium catalyst which is used for selective hydrogenation of acetylene in the presence of abundant ethylene. The catalyst exhibits remarkable performance for the selective conversion of acetylene to ethylene: high conversion (100%), ethylene selectivity (90%), and good stability. The unique structure of the catalyst (i.e., atomically dispersion of Pd atoms on graphene through Pd-C bond anchoring) blocks the formation of unselective subsurface hydrogen species and ensures the facile desorption of ethylene against the overhydrogenation to undesired ethane, which is the key for the outstanding selectivity of the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...