Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0304403, 2024.
Article in English | MEDLINE | ID: mdl-38809931

ABSTRACT

BACKGROUND: In the realm of Gut-Brain axis research, existing evidence points to a complex bidirectional regulatory mechanism between gut microbiota and the brain. However, the question of whether a causal relationship exists between gut microbiota and specific types of brain tumors, such as gliomas, remains unresolved. To address this gap, we employed publicly available Genome-Wide Association Study (GWAS) and MIOBEN databases, conducting an in-depth analysis using Two-Sample Mendelian Randomization (MR). METHOD: We carried out two sets of MR analyses. The preliminary analysis included fewer instrumental variables due to a high genome-wide statistical significance threshold (5×10-8). To enable a more comprehensive and detailed analysis, we adjusted the significance threshold to 1×10-5. We performed linkage disequilibrium analysis (R2 <0.001, clumping distance = 10,000kb) and detailed screening of palindromic SNPs, followed by MR analysis and validation through sensitivity analysis. RESULTS: Our findings reveal a causal relationship between gut microbiota and gliomas. Further confirmation via Inverse Variance Weighting (IVW) identified eight specific microbial communities related to gliomas. Notably, the Peptostreptococcaceae and Olsenella communities appear to have a protective effect, reducing glioma risk. CONCLUSION: This study not only confirms the causal link between gut microbiota and gliomas but also suggests a new avenue for future glioma treatment.


Subject(s)
Brain Neoplasms , Gastrointestinal Microbiome , Genome-Wide Association Study , Glioma , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Glioma/genetics , Glioma/microbiology , Gastrointestinal Microbiome/genetics , Brain Neoplasms/genetics , Brain Neoplasms/microbiology , Brain-Gut Axis , Linkage Disequilibrium
2.
PLoS One ; 19(4): e0300835, 2024.
Article in English | MEDLINE | ID: mdl-38652719

ABSTRACT

BACKGROUND: Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD: This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS: Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION: Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Helicobacter Infections , Helicobacter pylori , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/genetics , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Antibodies, Bacterial/blood , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/complications , Obesity/complications , Obesity/microbiology , Genome-Wide Association Study , Peptic Ulcer/microbiology , Peptic Ulcer/epidemiology , Gastritis/microbiology , Gastritis/complications , Chaperonin 60/genetics , Risk Factors
3.
Front Endocrinol (Lausanne) ; 15: 1345605, 2024.
Article in English | MEDLINE | ID: mdl-38435749

ABSTRACT

Background: Previous observational studies have demonstrated a correlation between metabolic syndrome related diseases and an elevated susceptibility to ulcers of lower limb. It has been suggested that this causal relationship may be influenced by the presence of peripheral artery disease (PAD). Nevertheless, the precise contribution of these factors as determinants of ulcers of lower limb remains largely unexplored. Method: This research incorporated information on hypertension, BMI, hyperuricemia, type 2 diabetes, PAD, and ulcers of lower limb sourced from the GWAS database. Univariate Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) methods were employed to assess the association between metabolic syndrome related diseases, including hypertension, obesity, hyperuricemia, and type 2 diabetes, as well as to investigate whether this association was influenced by PAD. Results: Univariate Mendelian randomization analysis showed that genetically predicted hypertension, BMI, and type 2 diabetes were associated with an increased risk of PAD and ulcers of lower limb, and PAD was associated with an increased risk of ulcers of lower limb, but there is no causal relationship between hyperuricemia and ulcers of lower limb. The results of multivariate Mendelian randomization showed that PAD mediated the causal relationship between hypertension, obesity and ulcers of lower limb, but the relationship between type 2 diabetes and ulcers of lower limb was not mediated by PAD. Conclusion: Hypertension, BMI and type 2 diabetes can increase the risk of ulcers of lower limb, and PAD can be used as a mediator of hypertension and obesity leading to ulcers of lower limb, These findings may inform prevention and intervention strategies directed toward metabolic syndrome and ulcers of lower limb.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Hyperuricemia , Metabolic Diseases , Metabolic Syndrome , Peripheral Arterial Disease , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mendelian Randomization Analysis , Ulcer , Hyperuricemia/complications , Hyperuricemia/epidemiology , Hyperuricemia/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Lower Extremity , Obesity
4.
Medicine (Baltimore) ; 103(7): e36679, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363903

ABSTRACT

Studies have indicated that Vascular mimicry (VM) could contribute to the unfavorable prognosis of skin cutaneous melanoma (SKCM). Thus, the objective of this study was to identify therapeutic targets associated with VM in SKCM and develop a novel prognostic model. Gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were utilized to identify differentially expressed genes (DEGs). By intersecting these DEGs with VM genes, we acquired VM-related DEGs specific to SKCM, and then identified prognostic-related VM genes. A VM risk score system was established based on these prognosis-associated VM genes, and patients were then categorized into high- and low-score groups using the median score. Subsequently, differences in clinical characteristics, gene set enrichment analysis (GSEA), and other analyses were further presented between the 2 groups of patients. Finally, a novel prognostic model for SKCM was established using the VM score and clinical characteristics. 26 VM-related DEGs were identified in SKCM, among the identified DEGs associated with VM in SKCM, 5 genes were found to be prognostic-related. The VM risk score system, comprised of these genes, is an independent prognostic risk factor. There were significant differences between the 2 patient groups in terms of age, pathological stage, and T stage. VM risk scores are associated with epithelial biological processes, angiogenesis, regulation of the SKCM immune microenvironment, and sensitivity to targeted drugs. The novel prognostic model demonstrates excellent predictive ability. Our study identified VM-related prognostic markers and therapeutic targets for SKCM, providing novel insights for clinical diagnosis and treatment.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Prognosis , Drug Delivery Systems , Risk Factors , Tumor Microenvironment
5.
Heliyon ; 9(12): e23003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076120

ABSTRACT

Background: Diabetic foot ulcers (DFUs) are among the most prevalent and dangerous complications of diabetes. Angiogenesis is pivotal for wound healing; however, its role in the chronic wound healing process in DFU requires further investigation. We aimed to investigate the pathogenic processes of angiogenesis in DFU from a molecular biology standpoint and to offer insightful information about DFU prevention and therapy. Methods: Differential gene and weighted gene co-expression network analyses (WGCNA) were employed to screen for genes related to DFU using the downloaded and collated GSES147890 datasets. With the goal of identifying hub genes, an interaction among proteins (PPI) network was constructed, and enrichment analysis was carried out. Utilizing a variety of machine learning techniques, including Boruta, Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), we were able to determine which hub genes most strongly correspond to DFU. This allowed us to create an ideally suited DFU forecasting model that was validated via an external dataset. Finally, by merging 36 angiogenesis-related genes (ARGs) and machine learning models, we identified the genes involved in DFU-related angiogenesis. Results: By merging 260 genes located in the green module and 59 differentially expressed genes (DEGs), 35 candidate genes highly associated with DFU were found for more investigation. 35 candidate genes were enriched in epidermal growth factor receptor binding, nuclear division regulation, fluid shear stress, atherosclerosis, and negative regulation of chromosomal structure for the enrichment study. Fifteen hub genes were found with the aid of the CytoHubba plug. The LASSO method scored better in terms of prediction performance (GSE134341) (LASSO:0.89, SVM:0.65, Boruta:0.66) based on the validation of the external datasets. We identified thrombomodulin (THBD) as a key target gene that potentially regulates angiogenesis during DFU development. Based on the external validation dataset (GSE80178 and GSE29221), receiver operating characteristic (ROC) curves with higher efficiency were generated to confirm the potential of THBD as a biomarker of angiogenesis in DFU. Furthermore supporting this finding were the results of Western blot and real-time quantitative polymerase chain reaction (RT-qPCR), which showed decreased THBD expression in human umbilical vein endothelial cells (HUVECs) cultivated under high glucose. Conclusions: The findings implicate that THBD may influence DFU progression as a potential target for regulating angiogenesis, providing a valuable direction for future studies.

6.
Prev Med Rep ; 36: 102433, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37781107

ABSTRACT

The prevention of diabetic foot ulcers (DFU) precedes treatment, in that early prevention significantly reduces the incidence of foot ulcers. The main objectives of this study were to examine the current prevalence of proactive foot ulcer examinations among diabetic patients and analyze influencing factors, in order to provide a scientific reference for the prevention of DFU in diabetic patients. The National Health and Nutrition Examination Survey (NHANES) 2011-2018 (n = 1278) data were utilized in this cross-sectional study. The dependent variable was whether patients underwent self-initiated foot ulcer inspections; risk factors that may lead to foot ulcers were included as independent variables. To explore the connection between the patient's subjective motivation to inspect foot ulcers and risk variables, the weighted logistic regression model was further carried out. Among all risk factors, race, body mass index (BMI) and hypertension were statistically significant between whether patients were examined for foot ulcers or not. In the fully adjusted logistic regression model, only hypertension was positively correlated with diabetic patient-initiated examination for foot ulcers. This study suggests that there is still room for improvement in the knowledge and behavior of diabetic patients to be proactive in preventing DFU. Health care and community workers should conduct targeted training on diabetic foot prevention to reduce and prevent DFU by reinforcing knowledge to build positive attitudes and drive preventive behavior change.

7.
Front Endocrinol (Lausanne) ; 14: 1189513, 2023.
Article in English | MEDLINE | ID: mdl-37645416

ABSTRACT

Background: Diabetic osteoporosis exhibits heterogeneity at the molecular level. Ferroptosis, a controlled form of cell death brought on by a buildup of lipid peroxidation, contributes to the onset and development of several illnesses. The aim was to explore the molecular subtypes associated with ferroptosis in diabetic osteoporosis at the molecular level and to further elucidate the potential molecular mechanisms. Methods: Integrating the CTD, GeneCards, FerrDb databases, and the microarray data of GSE35958, we identified ferroptosis-related genes (FRGs) associated with diabetic osteoporosis. We applied unsupervised cluster analysis to divide the 42 osteoporosis samples from the GSE56814 microarray data into different subclusters based on FRGs. Subsequently, FRGs associated with two ferroptosis subclusters were obtained by combining database genes, module-related genes of WGCNA, and differentially expressed genes (DEGs). Eventually, the key genes from FRGs associated with diabetic osteoporosis were identified using the least absolute shrinkage and selection operator (LASSO), Boruta, support vector machine recursive feature elimination (SVM - RFE), and extreme gradient boosting (XGBoost) machine learning algorithms. Based on ROC curves of external datasets (GSE56815), the model's efficiency was examined. Results: We identified 15 differentially expressed FRGs associated with diabetic osteoporosis. In osteoporosis, two distinct molecular clusters related to ferroptosis were found. The expression results and GSVA analysis indicated that 15 FRGs exhibited significantly different biological functions and pathway activities in the two ferroptosis subclusters. Therefore, we further identified 17 FRGs associated with diabetic osteoporosis between the two subclusters. The results of the comprehensive analysis of 17 FRGs demonstrated that these genes were heterogeneous and had a specific interaction between the two subclusters. Ultimately, the prediction model had a strong foundation and excellent AUC values (0.84 for LASSO, 0.84 for SVM - RFE, 0.82 for Boruta, and 0.81 for XGBoost). IDH1 is a common gene to all four algorithms thus being identified as a key gene with a high AUC value (AUC = 0.698). Conclusions: As a ferroptosis regulator, IDH1 is able to distinguish between distinct molecular subtypes of diabetic osteoporosis, which may offer fresh perspectives on the pathogenesis of the disease's clinical symptoms and prognostic heterogeneity.


Subject(s)
Diabetes Mellitus , Ferroptosis , Osteoporosis , Humans , Ferroptosis/genetics , Algorithms , Cell Death , Machine Learning , Osteoporosis/genetics
8.
Front Pharmacol ; 14: 1119103, 2023.
Article in English | MEDLINE | ID: mdl-37033625

ABSTRACT

Atopic dermatitis (AD) is an inflammatory, heterogeneous, chronic skin disorder characterized by recurrent eczematous lesions and intense pruritus, and the pathophysiology mechanism of AD is known for immune dysregulation and inflammatory responses. Wuguchong (maggot) has been widely used in the wound field and found with pharmacological properties of the anti-inflammatory and immunomodulatory function. Recently, some polysaccharides were proven to have beneficial effects on AD skin lesions in mice and humans. However, the effect of the polysaccharide extracted from Wuguchong (PEW) on AD remains to be investigated. In the present study, we examined the anti-inflammatory and immunomodulatory effects of PEW on AD and explored the potential mechanisms. Balb/c mice were orally administrated with PEW to evaluate the therapeutic effect of PEW on 2,4-dinitrochlorobenzene (DNCB)-induced AD. Oral PEW administration significantly ameliorated the lesions and symptoms in AD mice, such as the ear thickness and ear swelling degree, epidermal and dermal thickness, and the infiltration of mast cells. In addition, PEW treatment decreased the levels of serum IgE and histamine, the frequencies of Th1 and Th17 cells, as well as the mRNA expression levels of Th1 and Th17 cytokines and nuclear transcript factors (IFN-γ, T-bet, IL-17A, and ROR-rt). Furthermore, the activation of the NF-κB pathway and the phosphorylation of MAPKs (p38, ERK, and JNK) were significantly suppressed by PEW treatment. Taken together, our study suggests that PEW exerts anti-inflammatory and immunomodulatory effects through inhibition of Th1 and Th17 responses and downregulation of NF-κB and MAPK pathways, PEW would be developed as a promising immune therapy for AD.

9.
PLoS One ; 11(3): e0150247, 2016.
Article in English | MEDLINE | ID: mdl-26954362

ABSTRACT

Carcinoma-associated fibroblasts (CAFs) are critical in determining tumor invasion and metastasis. However the role of CAFs in the invasion of salivary gland adenoid cystic carcinoma (ACC) is poorly understood. In this study, we isolated primary CAFs from two ACC patients. ACC-derived CAFs expressed typical CAF biomarkers and showed increased migration and invasion activity. Conditioned medium collected from CAFs significantly promoted ACC cell migration and invasion. Co-culture of CAFs with ACC cells in a microfluidic device further revealed that CAFs localized at the invasion front and ACC cells followed the track behind the CAFs. Interfering of both matrix metalloproteinase and CXCL12/CXCR4 pathway inhibited ACC invasion promoted by CAFs. Overall, our study demonstrates that ACC-derived CAFs exhibit the most important defining feature of CAFs by promoting cancer invasion. In addition to secretion of soluble factors, CAFs also lead ACC invasion by creating an invasive track in the ECM.


Subject(s)
Carcinoma, Adenoid Cystic/metabolism , Cell Movement , Fibroblasts/metabolism , Salivary Gland Neoplasms/metabolism , Carcinoma, Adenoid Cystic/pathology , Cell Line, Tumor , Chemokine CXCL12/metabolism , Coculture Techniques , Female , Fibroblasts/pathology , Gelatinases/metabolism , Humans , Male , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Receptors, CXCR4/metabolism , Salivary Gland Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...