Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.528
Filter
1.
Int J Gen Med ; 17: 2791-2800, 2024.
Article in English | MEDLINE | ID: mdl-38962174

ABSTRACT

Purpose: Pain is a common yet undertreated symptom of Parkinson's disease (PD). This study investigated the effect of Gua Sha therapy on pain in patients with PD. Patients and Methods: A total of 56 PD patients with pain were randomized into either the experimental group (n=28), receiving 12 sessions of Gua Sha therapy, or the control group (n=28) without additional treatment. Participants underwent assessment at baseline, after the twelfth invention, and at the 2-month follow-up timepoints. The primary outcome was KPPS and VAS. Secondary outcomes included UPDRS I-III, PDSS-2, HADS, PDQ-39, and blood biomarkers (5-HT, IL-8, IL-10). Results: The experimental group reported a significant improvement in pain severity, motor functions, affective disorder, and sleep quality (P < 0.05). Furthermore, increasing trends in both 5-HT and IL-10, as well as decreasing trends in IL-8 were observed. No serious adverse events occurred. Conclusion: The preliminary findings suggest that Gua Sha therapy may be effective and safe for alleviating pain and improving other disease-related symptoms in PD patients.

2.
Small ; : e2403842, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966890

ABSTRACT

Constructing versatile metal nanoclusters (NCs) assemblies through noncovalent weak interactions between inter-ligands is a long-standing challenge in interfacial chemistry, while compelling interfacial hydrogen-bond-driven metal NCs assemblies remain unexplored so far. Here, the study reports an amination-ligand o-phenylenediamine-coordinated copper NCs (CuNCs), demonstrating the impact of interfacial hydrogen-bonds (IHBs) motifs on the luminescent behaviors of metal NCs as the alteration of protic solvent. Experimental results supported by theoretical calculation unveil that the flexibility of interfacial ligand and the distance of cuprophilic CuI···CuI interaction between intra-/inter-NCs can be tailored by manipulating the cooperation between the diverse IHBs motifs reconstruction, therewith the IHBs-modulated fundamental structure-property relationships are established. Importantly, by utilizing the IHBs-mediated optical polychromatism of aminated CuNCs, portable visualization of humidity sensing test-strips with fast response is successfully manufactured. This work not only provides further insights into exploring the interfacial chemistry of NCs based on inter-ligands hydrogen-bond interactions, but also offers a new opportunity to expand the practical application for optical sensing of metal NCs.

3.
J Mol Med (Berl) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953935

ABSTRACT

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

4.
Front Pharmacol ; 15: 1376637, 2024.
Article in English | MEDLINE | ID: mdl-38957383

ABSTRACT

Background: Natural products are widely used for primary insomnia (PI). This systematic review with trial sequential analysis (TSA) aimed to summarize evidence pertaining to the effectiveness and safety of Zao Ren An Shen (ZRAS) prescription, a commercial Chinese polyherbal preparation, for treating PI. Methods: Controlled clinical trials appraising ZRAS compared to controls or as an add-on treatment were systematically searched across seven databases until January 2024. Cochrane ROB 2.0 and ROBINS-I tools were adopted to determine risk of bias. Quality of evidence was assessed using the GRADE framework. Results: We analyzed 22 studies, involving 2,142 participants. The effect of ZRAS in reducing Pittsburgh Sleep Quality Index scores was found to be comparable to benzodiazepines [MD = 0.39, 95%CI (-0.12, 0.91), p = 0.13] and superior to Z-drugs [MD = -1.31, 95%CI (-2.37, -0.24), p = 0.02]. The addition of ZRAS to hypnotics more significantly reduced polysomnographically-recorded sleep onset latency [MD = -4.44 min, 95%CI (-7.98, -0.91), p = 0.01] and number of awakenings [MD = -0.89 times, 95%CI (-1.67, -0.10), p = 0.03], and increased total sleep time [MD = 40.72 min, 95%CI (25.14, 56.30), p < 0.01], with fewer adverse events than hypnotics alone. TSA validated the robustness of these quantitative synthesis results. However, the quality of evidence ranged from very low to low. The limited data available for follow-up did not support meta-synthesis. Conclusion: While ZRAS prescription shows promising effectiveness in treating PI, the overall quality of evidence is limited. Rigorously-designed randomized control trials are warranted to confirm the short-term efficacy of ZRAS and explore its medium-to-long-term efficacy. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=471497), identifier (CRD42023471497).

5.
Chem Commun (Camb) ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993023

ABSTRACT

Metal-free, photoredox-catalyzed aromatization-driven deconstructive functionalization of spiro-dihydroquinazolinones with α-CF3 alkenes is presented. The readily available spiro-dihydroquinazolinones reacted efficiently with α-CF3 alkenes during photocatalysis to give the gem-difluoroallylated and the CF3-containing quinazolin-4(3H)-ones in good yields with excellent chemoselectivity. The selectivity depends on the electron effect of substituents in α-CF3 alkenes. A wide range of four-, five-, six-, seven-, eight- and twelve-membered spiro-dihydroquinazolinones were compatible with this transformation. The protocol is also characterized by the mild and redox-neutral reaction conditions, good functional group compatibility and excellent atom economy. Mechanistic studies revealed that the reaction proceeds via a radical pathway.

6.
J Alzheimers Dis ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38995776

ABSTRACT

Background: Alzheimer's disease (AD) is a neurodegenerative disorder caused by a complex interplay of various factors. However, a satisfactory cure for AD remains elusive. Pharmacological interventions based on drug targets are considered the most cost-effective therapeutic strategy. Therefore, it is paramount to search potential drug targets and drugs for AD. Objective: We aimed to provide novel targets and drugs for the treatment of AD employing transcriptomic data of AD and normal control brain tissues from a new perspective. Methods: Our study combined the use of a multi-layer perceptron (MLP) with differential expression analysis, variance assessment and molecular docking to screen targets and drugs for AD. Results: We identified the seven differentially expressed genes (DEGs) with the most significant variation (ANKRD39, CPLX1, FABP3, GABBR2, GNG3, PPM1E, and WDR49) in transcriptomic data from AD brain. A newly built MLP was used to confirm the association between the seven DEGs and AD, establishing these DEGs as potential drug targets. Drug databases and molecular docking results indicated that arbaclofen, baclofen, clozapine, arbaclofen placarbil, BML-259, BRD-K72883421, and YC-1 had high affinity for GABBR2, and FABP3 bound with oleic, palmitic, and stearic acids. Arbaclofen and YC-1 activated GABAB receptor through PI3K/AKT and PKA/CREB pathways, respectively, thereby promoting neuronal anti-apoptotic effect and inhibiting p-tau and Aß formation. Conclusions: This study provided a new strategy for the identification of targets and drugs for the treatment of AD using deep learning. Seven therapeutic targets and ten drugs were selected by using this method, providing new insight for AD treatment.

7.
J Asian Nat Prod Res ; : 1-10, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996034

ABSTRACT

Three new diterpenoid alkaloids (1, 2, 3) and seventeen known (4-20) compounds were isolated from the whole plant of Delphinium sherriffii Munz (Ranunculaceae). Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were evaluated for the inhibitory activity of Sf9 cells and compound 5 exhibited the strongest cytotoxicity (IC50 = 8.97 µM) against Sf9 cell line.

8.
Adv Sci (Weinh) ; : e2403262, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973296

ABSTRACT

Despite docetaxel combined with cisplatin and 5-fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48-linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)-like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG-like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7-USP10-G3BP1 axis contains potential targets and biomarkers for NPC treatment.

11.
Ren Fail ; 46(2): 2367708, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973391

ABSTRACT

BACKGROUND: Cellular senescence, macrophages infiltration, and vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation participate in the pathophysiology of vascular calcification in chronic kidney disease (CKD). Senescent macrophages are involved in the regulation of inflammation in pathological diseases. In addition, senescent cells spread senescence to neighboring cells via Interferon-induced transmembrane protein3 (IFITM3). However, the role of senescent macrophages and IFITM3 in VSMCs calcification remains unexplored. AIMS: To explore the hypothesis that senescent macrophages contribute to the calcification and senescence of VSMCs via IFITM3. METHODS: Here, the macrophage senescence model was established using Lipopolysaccharides (LPS). The VSMCs were subjected to supernatants from macrophages (MCFS) or LPS-induced macrophages (LPS-MCFS) in the presence or absence of calcifying media (CM). Senescence-associated ß-galactosidase (SA-ß-gal), Alizarin red (AR), immunofluorescent staining, and western blot were used to identify cell senescence and calcification. RESULTS: The expression of IFITM3 was significantly increased in LPS-induced macrophages and the supernatants. The VSMCs transdifferentiated into osteogenic phenotype, expressing higher osteogenic differentiation markers (RUNX2) and lower VSMCs constructive makers (SM22α) when cultured with senescent macrophages supernatants. Also, senescence markers (p16 and p21) in VSMCs were significantly increased by senescent macrophages supernatants treated. However, IFITM3 knockdown inhibited this process. CONCLUSIONS: Our study showed that LPS-induced senescence of macrophages accelerated the calcification of VSMCs via IFITM3. These data provide a new perspective linking VC and aging, which may provide clues for diagnosing and treating accelerated vascular aging in patients with CKD.


Subject(s)
Cellular Senescence , Lipopolysaccharides , Macrophages , Membrane Proteins , Muscle, Smooth, Vascular , RNA-Binding Proteins , Vascular Calcification , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Lipopolysaccharides/pharmacology , Vascular Calcification/pathology , Vascular Calcification/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Cells, Cultured , Animals , Osteogenesis , Cell Transdifferentiation
12.
Eur J Oncol Nurs ; 71: 102667, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003843

ABSTRACT

PURPOSE: To evaluate the associations between frailty and all-cause and cancer-related mortality. Additionally, the objective is to compare the magnitude of these associations between older adults and younger adults. METHODS: We gathered baseline data from NHANES (1999-2018) and developed a cumulative index consisting of 39 items to evaluate frailty. The National Death Index database was utilized to track the survival status of individuals. The Cox regression model was employed to estimate the associations between frailty status and all-cause and cancer-related mortality. RESULTS: Ultimately, 3398 cancer patients were included in the analysis, comprising 910 younger adults and 2488 older adults. Compared to non-frail patients, the elevated all-cause and cancer-related mortality among pre-frail patients was not statistically significant (HRs = 1.312, 95%CI: 0.956-1.800, P = 0.092; HRs = 1.462, 0.811-2.635, P = 0.207). However, a significant elevation of both all-cause and cancer-related mortality risk was observed among frail patients (HRs = 2.213, 1.617-3.030, P < 0.001; HRs = 2.463, 95%CI = 1.370-4.429, P = 0.003). Frailty individuals demonstrated a more pronounced association with the prediction of all-cause mortality in younger (HRs = 2.230, 1.073-4.634, P = 0.032) than in older adults (HRs = 2.090, 1.475-2.960, P < 0.001). Sensitivity analysis consistently revealed robust results. RCS plots suggested a progressively escalating dose-response correlation between frailty and both all-cause and cancer-related mortality risk. CONCLUSIONS: Pre-frailty did not result in an increase in mortality risks compared to non-frailty. However, frailty caused a higher all-cause and cancer-related mortality risk than non-frailty. Identifying those at risk and implementing targeted interventions may contribute to extending healthy life expectancy, regardless of age.

13.
Anal Chem ; 96(28): 11508-11515, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953489

ABSTRACT

26% of the world's population lacks access to clean drinking water; clean water and sanitation are major global challenges highlighted by the UN Sustainable Development Goals, indicating water security in public water systems is at stake today. Water monitoring using precise instruments by skilled operators is one of the most promising solutions. Despite decades of research, the professionalism-convenience trade-off when monitoring ubiquitous metal ions remains the major challenge for public water safety. Thus, to overcome these disadvantages, an easy-to-use and highly sensitive visual method is desirable. Herein, an innovative strategy for one-to-nine metal detection is proposed, in which a novel thiourea spectroscopic probe with high 9-metal affinity is synthesized, acting as "one", and is detected based on the 9 metal-thiourea complexes within portable spectrometers in the public water field; this is accomplished by nonspecialized personnel as is also required. During the processing of multimetal analysis, issues arise due to signal overlap and reproducibility problems, leading to constrained sensitivity. In this innovative endeavor, machine learning (ML) algorithms were employed to extract key features from the composite spectral signature, addressing multipeak overlap, and completing the detection within 30-300 s, thus achieving a detection limit of 0.01 mg/L and meeting established conventional water quality standards. This method provides a convenient approach for public drinking water safety testing.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Thiourea/chemistry , Spectrum Analysis/methods , Machine Learning
14.
Org Biomol Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005048

ABSTRACT

An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.

15.
Curr Oncol Rep ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002054

ABSTRACT

PURPOSE OF REVIEW: Analyze current evidence on racial/ethnic disparities in cardiovascular outcomes among cancer survivors, identifying factors and proposing measures to address health inequities. RECENT FINDINGS: Existing literature indicates that the Black population experiences worse cardiovascular outcomes following the diagnosis of both initial primary cancer and second primary cancer, with a notably higher prevalence of cardio-toxic events, particularly among breast cancer survivors. Contributing socioeconomic factors to these disparities include unfavorable social determinants of health, inadequate insurance coverage, and structural racism within the healthcare system. Additionally, proinflammatory epigenetic modification is hypothesized to be a contributing genetic variation factor. Addressing these disparities requires a multiperspective approach, encompassing efforts to address racial disparities and social determinants of health within the healthcare system, refine healthcare policies and access, and integrate historically stigmatized racial groups into clinical research. Racial and ethnic disparities persist in cardiovascular outcomes among cancer survivors, driven by multifactorial causes, predominantly associated with social determinants of health. Addressing these healthcare inequities is imperative, and timely efforts must be implemented to narrow the existing gap effectively.

16.
Cancer Lett ; 598: 217111, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972347

ABSTRACT

Intratumoral delivery of mRNA encoding immunostimulatory molecules can initiate a robust, global antitumor response with little side effects by enhancing local antigen presentation in the tumor and the tumor draining lymph node. Neoantigen-based mRNA nanovaccine can inhibit melanoma growth in mice by intratumoral injection. Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune responses by secreting immunosuppressive agents, such as reactive oxygen species (ROS). Suppression of STAT3 activity by stattic may reduce MDSC-mediated immunosuppression in the TME and promote the antitumor immune responses. In this study, in vitro transcribed mRNA encoding tumor antigen survivin was prepared and injected intratumorally in BALB/c mice bearing subcutaneous colon cancer tumors. In vivo studies demonstrated that intratumoral survivin mRNA therapy could induce antitumor T cell response and inhibit tumor growth of colon cancer. Depletion of CD8+ T cells could significantly inhibit survivin mRNA-induced antitumor effects. RT-qPCR and ELISA analysis indicated that survivin mRNA treatment led to increased expression of receptor activator nuclear factor-κB ligand (RANKL). In vitro experiment showed that MDSCs could be induced from mouse bone marrow cells by RANKL and RANKL-induced MDSCs could produce high level of ROS. STAT3 inhibitor stattic suppressed activation of STAT3 and NF-κB signals, thereby inhibiting expansion of RANKL-induced MDSCs. Combination therapy of survivin mRNA and stattic could significantly enhance antitumor T cell response, improve long-term survival and reduce immunosuppressive tumor microenvironment compared to each monotherapy. In addition, combined therapy resulted in a significantly reduced level of tumor cell proliferation and an obviously increased level of tumor cell apoptosis in CT26 colon cancer-bearing mice, which could be conducive to inhibit the tumor growth and lead to immune responses to released tumor-associated antigens. These studies explored intratumoral mRNA therapy and mRNA-based combined therapy to treat colon cancer and provide a new idea for cancer therapy.

17.
Plant Cell Environ ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007421

ABSTRACT

Legumes perform symbiotic nitrogen fixation through rhizobial bacteroids housed in specialised root nodules. The biochemical process is energy-intensive and consumes a huge carbon source to generate sufficient reducing power. To maintain the symbiosis, malate is supplied by legume nodules to bacteroids as their major carbon and energy source in return for ammonium ions and nitrogenous compounds. To sustain the carbon supply to bacteroids, nodule cells undergo drastic reorganisation of carbon metabolism. Here, a comprehensive quantitative comparison of the mitochondrial proteomes between root nodules and uninoculated roots was performed using data-independent acquisition proteomics, revealing the modulations in nodule mitochondrial proteins and pathways in response to carbon reallocation. Corroborated our findings with that from the literature, we believe nodules preferably allocate cytosolic phosphoenolpyruvates towards malate synthesis in lieu of pyruvate synthesis, and nodule mitochondria prefer malate over pyruvate as the primary source of NADH for ATP production. Moreover, the differential regulation of respiratory chain-associated proteins suggests that nodule mitochondria could enhance the efficiencies of complexes I and IV for ATP synthesis. This study highlighted a quantitative proteomic view of the mitochondrial adaptation in soybean nodules.

18.
Int J Pharm ; : 124472, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013532

ABSTRACT

Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.

19.
J Agric Food Chem ; 72(28): 15740-15754, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970822

ABSTRACT

Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-ß and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.


Subject(s)
Butanones , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/drug therapy , Male , Signal Transduction/drug effects , Humans , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Butanones/pharmacology , Rubus/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Epithelial-Mesenchymal Transition/drug effects
20.
Am J Med Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825074

ABSTRACT

BACKGROUND: Superoxide dismutase 1 (SOD1) is one of the most important participants of antioxidant enzyme system in biological system. Previous studies have found that SOD1 is associated with many inflammatory diseases. The goal of this study was to assess the associations of serum SOD1 with the severity and prognosis in community-acquired pneumonia (CAP) patients by a prospective cohort study. METHODS: CAP patients were enrolled from the Second Affiliated Hospital of Anhui Medical University. Peripheral blood samples were gathered. The level of serum SOD1 was detected through enzyme linked immunosorbent assay (ELISA). Clinical characteristics and demographic information were analyzed. RESULTS: The level of serum SOD1 was gradually upregulated with elevated CAP severity scores. Spearman correlation coefficient or Pearson rank correlation analyses indicated that serum SOD1 was strongly connected with many clinical parameters among CAP patients. Further linear and logistic regression analyses found that the level of serum SOD1 was positively associated with CRB-65, CURB-65, SMART-COP, and CURXO scores among CAP patients. Moreover, serum higher SOD1 at admission substantially increased the risks of ICU admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stays during hospitalization. Serum SOD1 level combination with CAP severity scores elevated the predictive abilities for severity and death compared with alone serum SOD1 and CAP severity scores in CAP patients during hospitalization. CONCLUSION: The level of serum SOD1 is positively associated with the severity and poor prognosis in CAP patients, suggesting that SOD1 is implicated in the initiation and progression of CAP. Serum SOD1 may be regarded as a biomarker to appraise the severity and prognosis for CAP patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...