Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 29(3): 103893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272173

ABSTRACT

CD40, a novel immunomodulatory cancer therapy target, is expressed by B cells, macrophages, and dendritic cells (DCs) and mediates cytotoxic T cell priming through the CD40 ligand. Some tumors show promising responses to monotherapy or combination therapy with agonistic anti-CD40 antibodies. The development of improved anti-CD40 antibodies makes CD40 activation an innovative strategy in cancer immunotherapy. In this review, we trace the history of CD40 research and summarize preclinical and clinical findings. We emphasize the ongoing development of improved anti-CD40 antibodies and explore strategies for effective combination therapies. Guided by predictive biomarkers, future research should identify patient populations benefiting the most from CD40 activation.


Subject(s)
CD40 Antigens , Neoplasms , Humans , Neoplasms/drug therapy , T-Lymphocytes, Cytotoxic , Macrophages , Immunotherapy , Dendritic Cells
2.
Cancers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053457

ABSTRACT

Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...