Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(25): e2308063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38200674

ABSTRACT

The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.

2.
Langmuir ; 39(47): 16854-16862, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956463

ABSTRACT

The behavior of giant amphiphilic molecules at the air-water interface has become a subject of concern to researchers. Small changes in the molecular structure can cause obvious differences in the molecular arrangement and interfacial properties of the monolayer. In this study, we have systematically investigated the interfacial behaviors of the giant amphiphilic molecules with different number of hydrophobic BPOSS blocks and one hydrophilic ACPOSS block ((BPOSS)n-ACPOSS (n = 1-5)) at the air-water interface by the surface pressure-area (π-A) isotherm, Brewster angle microscopy (BAM), compression modulus measurement, and hysteresis measurement. We found that both the number of BPOSS blocks and the compression rate can significantly influence the interfacial behaviors of giant molecules. The π-A isotherms of giant molecules (BPOSS)n-ACPOSS (n = 2-5) exhibit a "cusp" phenomenon which can be attributed to the transition from monolayer to multilayer. However, the cusp is dramatically different from the "collapse" of the monolayer studied in other molecular systems, which is highly dependent on the compression rate of the monolayer. In addition, the compression modulus and hysteresis measurements reveal that the number of BPOSS blocks of (BPOSS)n-ACPOSS plays an important role in the static elasticity, stability, and reversibility of the Langmuir films.

3.
Langmuir ; 38(4): 1611-1620, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35068145

ABSTRACT

Giant amphiphiles containing azobenzene and polyhedral oligomeric silsesquioxane (POSS) units are synthesized by linking 4,4'-azodianiline (ADA) and POSS derivatives by stepwise amidation and further modification. The synthesized giant amphiphiles are photoresponsive and show trans-cis isomerization under ultraviolet (UV) irradiation. These giant amphiphiles are spread on the air-water interface and compressed by the barrier without and under UV irradiation. By compression, the giant amphiphiles undergo a phase transition from gas (G), liquid expanded (LE), liquid condensed (LC), and solid (S) to a final collapse on the water surface. The giant amphiphiles are cis-isomer-rich under UV irradiation and are trans-isomer-rich without UV irradiation. The trans-isomers are straight-shaped, while the cis-isomers are bent, and hence, their phase transition behaviors on the water surface exhibit a distinct difference.

SELECTION OF CITATIONS
SEARCH DETAIL
...