Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 258(Pt 1): 128520, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040150

ABSTRACT

In this study, we developed an enhanced heterogeneous interface intelligent conductive hydrogel NH3 sensor for individualized treatment of infected wounds. The sensor achieved monitoring, self-diagnosis, and adaptive gear adjustment functions. The PPY@PDA/PANI(3/6) sensor had a minimum NH3 detection concentration of 50 ppb and a response value of 2.94 %. It also had a theoretical detection limit of 49 ppt for infected wound gas. The sensor exhibited a fast response time of 23.2 s and a recovery time of 42.9 s. Tobramycin (TOB) was encapsulated in a self-healing QCS/OD hydrogel formed by quaternized chitosan (QCS) and oxidized dextran (OD), followed by the addition of polydopamine-coated polypyrrole nanowires (PPY@PDA) and polyaniline (PANI) to prepare electrically conductive drug-loaded PPY@PDA/PANI hydrogels. The drug-loaded PPY@PDA/PANI hydrogel was combined with a PANI/PVDF membrane to form an enhanced heterogeneous interfacial PPY@PDA/PANI/PVDF-based sensor, which could adaptively learn the individual wound ammonia response and adjust the speed of drug release from the PPY@PDA/PANI hydrogel with electrical stimulation. Drug release and animal studies demonstrated the efficacy of the PPY@PDA/PANI hydrogel in inhibiting infection and accelerating wound healing. In conclusion, the gas-sensitive conductive hydrogel sensing system is expected to enable intelligent drug delivery and provide personalized treatment for complex wound management.


Subject(s)
Chitosan , Fluorocarbon Polymers , Polymers , Polyvinyls , Animals , Hydrogels/pharmacology , Pyrroles
2.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145346

ABSTRACT

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Biomimetics , Proteomics , Wound Healing , Bandages
3.
ACS Sens ; 4(8): 2150-2155, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31296006

ABSTRACT

Yttria-stabilized zirconia (YSZ) based potentiometric gas sensors have been widely utilized for detecting NOx (NO and NO2). Nevertheless, it is still remains challenging issue for YSZ-based sensors to sense total NOx due to the opposite response signals to NO and NO2. Herein, we report an efficient strategy to sense total NOx at high temperature (above 300 °C) by designing a dual functional sensing electrode (SE); namely, the SE will simultaneously convert NO (in NOx mixture) to NO2 and electrocatalyze all of the obtained NO2 to generate the response signal of total NOx. In comparison with those previously reported total NOx sensors, the proposed total NOx sensor will be featured with a simplified sensor configuration and desirable long-term stability. To confirm the practicability of the proposed strategy, the NO conversion rate of several metal oxides and their composites have been measured and it turns out that the Co3O4/NiO shows relatively high NO conversion rate. Further study indicates a YSZ-based sensor consisting of (Co3O4 + 20 wt % NiO)-SE and Mn-based RE demonstrates satisfactory performance in detecting total NOx. For instance, analogous response magnitude to NO and NO2 as well as the mixture of NO/NO2 (within 35 ppm) is witnessed for the sensor; particularly, the sensor gives acceptable stability and response/recovery rate at the operating temperature of 500 °C within the examined period. In summary, the use of dual functional SE (e.g., Co3O4/NiO composite SE) indeed addressed those issues of concern in monitoring the level of total NOx and has provided a promising alternative way for designing future high-performance total NOx sensor.


Subject(s)
Cobalt/chemistry , Electrochemical Techniques , Nickel/chemistry , Nitrogen Oxides/analysis , Oxides/chemistry , Yttrium/chemistry , Zirconium/chemistry , Electrodes
4.
ACS Sens ; 4(4): 1081-1089, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30912423

ABSTRACT

Breath analysis has been considered a noninvasive, safe, and reliable way to diagnose cancer at very early stage. Rapid detection of cancer volatile markers in breath samples via a portable sensing device will lay the foundation of future early cancer diagnosis. Nevertheless, unsatisfactory sensitivity and specificity of these sensing devices restrain the clinical application of breath analysis. Herein, we proposed the strategy of designing the light-regulated electrochemical reaction assisted core-shell heterostructure to address the issue of concern; that is, the photoactive shell will be designed for trigging the light-regulated electrochemical reaction and enhancing the sensitivity while a catalytic active core will play the function of removing interference gases. After screening of various core candidates, Fe2O3 was found to exhibit relatively low conversion rate to 3-methylhexane, which is one of the representative volatile markers for breath analysis, suggesting that mutual interference would be eliminated by Fe2O3. Based on this assumption, an electrochemical sensor comprising core-shell Fe2O3@ZnO-SE (vs Mn-based RE) was fabricated and sensing properties to 6 kinds of volatile markers was evaluated. Interestingly, the thickness of ZnO shell significantly influenced the response behavior; typically, the Fe2O3@ZnO with shell thickness of 4.8 nm offers the sensor high selectivity to 3-methylhexane. In contrast, significantly mutual response interference is observed for the Fe2O3@ZnO with extremely thick/thin shell. Particularly, sensing properties are greatly enhanced upon illumination; a detection limit to 3-methylhexane can even be as low as 0.072 ppm which will be useful in clinic application. Besides, the high selectivity of the sensor to 3-methylhexane is further confirmed by the testing of simulated breath samples. In summary, we anticipate that the strategy proposed in this research will be a starting point for artificially tailoring the sensitivity and selectivity of future sensing devices.


Subject(s)
Breath Tests/methods , Electrochemical Techniques/methods , Ferric Compounds/chemistry , Volatile Organic Compounds/analysis , Zinc Oxide/chemistry , Biomarkers, Tumor/analysis , Humans , Light , Limit of Detection , Zinc Oxide/radiation effects
5.
Opt Express ; 27(3): 2783-2791, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732310

ABSTRACT

Three different types of rare earth (RE3+) ions-doped silica thin films are fabricated by a soft chemistry-based method. By introducing tin oxide (SnO2) nanocrystals with larger cross-sections as sensitizers, the characteristic emission intensity of RE3+ ions in amorphous silica thin films can be enhanced by more than two orders of magnitude via the energy transfer process. The possible energy transfer processes under different local environment are revealed by using Eu3+ ions as an optical probe. Quantitative studies of PL decay lifetime and temperature-dependence PL spectra suggest that the partial incorporation of RE3+ ions into SnO2 sites gives rises to the change of crystal-field symmetry and the significant enhancement of energy transfer efficiency. Further, typical analytical energy dispersive X-ray spectroscopy (EDS) mapping results prove that part of Eu3+ ions doped into the SnO2 sites after annealing at 1000 °C. We anticipate that our results would shed light on the future research on the energy transfer mechanisms under different local structures of RE3+ ions.

6.
RSC Adv ; 9(34): 19699-19706, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519384

ABSTRACT

The reference electrode (RE) provides a stable potential for electrochemical detection; therefore, the RE plays an important role in environmental monitoring. In this paper, a novel batch of microfabricated silicon-base miniaturized Ag/AgCl RE was reported. A specially designed mini-tank for saturated KCl solution storage and a nanochannel array for ion-exchange were fabricated on a 4 inch (100) silicon wafer using a two-step KOH anisotropic etching process. An Ag/AgCl electrode was fabricated on a 4 inch Pyrex 7740 glass substrate. Finally, the finished silicon and glass substrates were anode bonded to form the entire system. By comparing with a conventional solid-state Ag/AgCl RE in electrochemical microsensors, a pre-packaged saturated KCl solution in the mini-tank provided a stable working environment for the Ag/AgCl electrode to ensure a constant reference potential. Compared with a routine glass-structured RE and by replacing the ion-exchange membrane with a nanochannel array, the miniaturized RE achieved a longer lifetime. The size of the finished miniaturized RE electrode was 11 mm × 14 mm. The reference potential variation was only 0.1 mV under continuous testing for 3000 s. The standard deviation in the reference potential was only 1.314 mV in different Na2SO4 buffer concentrations ranging from 3 mM to 30 mM. To verify the practicality of the novel silicon-base miniaturized RE, the fabricated RE was applied to measure the amount of nitrite in a water sample and achieved a better linearity of R 2 = 0.998. This miniaturized RE showed better reference potential stability and consistency because of the batch fabrication technique. This novel strategy for the design and manufacture of the miniaturized RE shows a bright future in the wide use of electrochemical sensors in online monitoring of water pollutants.

7.
Nanotechnology ; 30(1): 015703, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30284536

ABSTRACT

Particulate matter (PM) air pollution has been established as a significant threat to public health and a destructive factor to the climate and eco-systems. In order to eliminate the effects of PM air pollution, various air filtering strategies based on electrospun nanofibers have recently been developed. However, to date, almost none of the existing nanofibers based air filters can meet the requirements of high-performance air PM filtering, including high PM removal efficiency, low resistance to airflow, and long service life, etc. For the first time, we report a fabrication process using the electrospinning method for air filters based on thermoplastic polyurethane (TPU) nanofibers. The average diameters of TPU nanofibers are tunable from 0.14 ± 0.06 µm to 0.82 ± 0.22 µm by changing the TPU concentrations in polymeric solutions. The optimized TPU nanofibers based air filters demonstrate the attractive attributes of high PM2.5 removal efficiency up to 98.92%, good optical transparency of ∼60%, low pressure drop of ∼10 Pa, high quality factor of 0.45 Pa-1, and long service life under the flow rate of 200 ml min-1, which is ground-breaking compared with the existing nanofibers based air filters. These TPU nanofibers based air filters, with the excellent filtration performance and light transmittance, will shed light on the future research of nanofibers for various filtration applications and greatly benefit the public health by reducing the effects of PM air pollution.


Subject(s)
Air Filters , Air Pollutants/analysis , Particulate Matter/analysis , Plastics/chemistry , Polyurethanes/chemistry , Static Electricity , Temperature , Nanofibers/chemistry , Nanofibers/ultrastructure
8.
Sensors (Basel) ; 18(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973553

ABSTRACT

Zirconia-based limiting current oxygen sensor gains considerable attention, due to its high-performance in improving the combustion efficiency of fossil fuels and reducing the emission of exhaust gases. Nevertheless, the Pt electrode is frequently used in the oxygen sensor, therefore, it restrains the broader application due to the high cost. Quite recently, La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) has been reported to be highly active to catalyze oxygen reduction. Herein, with the intention of replacing the frequently used Pt, we studied the practicability of adapting the LSCM to zirconia-based limiting current oxygen sensor. Through comparing the electrocatalytic activity of LSCM and Pt, it is confirmed that LSCM gave analogous oxygen reactivity with that of the Pt. Then, limiting the current oxygen sensors comprised of LSCM or Pt are fabricated and their sensing behavior to oxygen in the range of 2⁻25% is evaluated. Conclusively, quick response/recovery rate (within 7s), linear relationship, and high selectivity (against 5% CO2 and H2O) in sensing oxygen are observed for the sensors, regardless of the sensing materials (LSCM or Pt) that are used in the sensor. Particularly, identical sensing characteristics are observed for the sensors consisting of LSCM or Pt, indicating the practicability of replacing the Pt electrode by adapting the LSCM electrode to future zirconia-based oxygen sensors.

9.
ACS Sens ; 2(10): 1467-1473, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28862003

ABSTRACT

Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C3H6, NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Gases/analysis , Hazardous Substances/analysis , Light , Algorithms , Electrodes , Humans , Lighting , Limit of Detection
10.
Sensors (Basel) ; 17(3)2017 Mar 12.
Article in English | MEDLINE | ID: mdl-28287492

ABSTRACT

A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

11.
Sensors (Basel) ; 15(7): 17558-71, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26205270

ABSTRACT

Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers-one thick and the other thin-fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40-1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages.

SELECTION OF CITATIONS
SEARCH DETAIL
...