Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123095, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37451211

ABSTRACT

Wavelength selection is crucial to the success of near-infrared (NIR) spectroscopy analysis as it considerably improves the generalization of the multivariate model and reduces model complexity. This study proposes a new wavelength selection method, interval flower pollination algorithm (iFPA), for spectral variable selection in the partial least squares regression (PLSR) model. The proposed iFPA consists of three phases. First, the flower pollination algorithm is applied to search for informative spectral variables, followed by variable elimination. Subsequently, the iFPA performs a local search to determine the best continuous interval spectral variables. The interpretability of the selected variables is assessed on three public NIR datasets (corn, diesel and soil datasets). Performance comparison with other competing wavelength selection methods shows that the iFPA used in conjunction with the PLSR model gives better prediction performance, with the root mean square error of prediction values of 0.0096-0.0727, 0.0015-3.9717 and 1.3388-29.1144 are obtained for various responses in corn, diesel and soil datasets, respectively.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123037, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37356390

ABSTRACT

The proliferation of pathogenic fungi in sugarcane crops poses a significant threat to agricultural productivity and economic sustainability. Early identification and management of sugarcane diseases are therefore crucial to mitigate the adverse impacts of these pathogens. In this study, visible and near-infrared spectroscopy (380-1400 nm) combined with a novel wavelength selection method, referred to as modified flower pollination algorithm (MFPA), was utilized for sugarcane disease recognition. The selected wavelengths were incorporated into machine learning models, including Naïve Bayes, random forest, and support vector machine (SVM). The developed simplified SVM model, which utilized the MFPA wavelength selection method yielded the best performances, achieving a precision value of 0.9753, a sensitivity value of 0.9259, a specificity value of 0.9524, and an accuracy of 0.9487. These results outperformed those obtained by other wavelength selection approaches, including the selectivity ratio, variable importance in projection, and the baseline method of the flower pollination algorithm.


Subject(s)
Saccharum , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Bayes Theorem , Algorithms , Edible Grain , Support Vector Machine , Least-Squares Analysis
3.
Math Biosci Eng ; 19(7): 6455-6468, 2022 04 24.
Article in English | MEDLINE | ID: mdl-35730266

ABSTRACT

Dynamic economic dispatch (DED) problem considering prohibited operating zones (POZ), ramp rate constraints, transmission losses and spinning reserve constraints is a complicated non-linear problem which is difficult to solve efficiently. In this paper, a mixed integer linear programming (MILP) method is proposed to solve such a DED problem. Firstly, a novel MILP formulation for DED problem without considering the transmission losses, denoted by MILP-1, is presented by using perspective cut reformulation technique. When the transmission losses are considered, the quadratic terms in the transmission losses are replaced by their first order Taylor expansions, and then an MILP formulation for DED considering the transmission losses, denoted by MILP-2, is obtained. Based on MILP-1 and MILP-2, an MILP-iteration algorithm is proposed to solve the complicated DED problem. The effectiveness of the MILP formulation and MILP iteration algorithm are assessed by several cases and the simulation results show that both of them can solve to competitive solutions in a short time.


Subject(s)
Algorithms , Programming, Linear , Computer Simulation
4.
J Inequal Appl ; 2017(1): 239, 2017.
Article in English | MEDLINE | ID: mdl-29033531

ABSTRACT

In this paper, a class of nonlinear constrained optimization problems with both inequality and equality constraints is discussed. Based on a simple and effective penalty parameter and the idea of primal-dual interior point methods, a QP-free algorithm for solving the discussed problems is presented. At each iteration, the algorithm needs to solve two or three reduced systems of linear equations with a common coefficient matrix, where a slightly new working set technique for judging the active set is used to construct the coefficient matrix, and the positive definiteness restriction on the Lagrangian Hessian estimate is relaxed. Under reasonable conditions, the proposed algorithm is globally and superlinearly convergent. During the numerical experiments, by modifying the technique in Section 5 of (SIAM J. Optim. 14(1): 173-199, 2003), we introduce a slightly new computation measure for the Lagrangian Hessian estimate based on second order derivative information, which can satisfy the associated assumptions. Then, the proposed algorithm is tested and compared on 59 typical test problems, which shows that the proposed algorithm is promising.

5.
J Inequal Appl ; 2017(1): 145, 2017.
Article in English | MEDLINE | ID: mdl-28680248

ABSTRACT

In this paper, we present a QP-free algorithm for nonlinear semidefinite programming. At each iteration, the search direction is yielded by solving two systems of linear equations with the same coefficient matrix; [Formula: see text] penalty function is used as merit function for line search, the step size is determined by Armijo type inexact line search. The global convergence of the proposed algorithm is shown under suitable conditions. Preliminary numerical results are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...