Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2401664, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704673

ABSTRACT

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.

2.
Angew Chem Int Ed Engl ; 63(8): e202318224, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38095880

ABSTRACT

The built-in electric field of the polymer semiconductors could be regulated by the dipole moment of its building blocks, thereby promoting the separation of photogenerated carriers and achieving efficient solar-driven water splitting. Herein, three perylene diimide (PDI) polymers, namely oPDI, mPDI and pPDI, are synthesized with different phenylenediamine linkers. Notably, the energy level structure, light-harvesting efficiency, and photogenerated carrier separation and migration of polymers are regulated by the orientation of PDI unit. Among them, oPDI enables a large dipole moment and robust built-in electric field, resulting in enhanced solar-driven water splitting performance. Under simulated sunlight irradiation, oPDI exhibits the highest photocurrent of 115.1 µA cm-2 for photoelectrochemical oxygen evolution, which is 11.5 times that of mPDI, 26.8 times that of pPDI and 104.6 times that of its counterparts PDI monomer at the same conditions. This work provides a strategy for designing polymers by regulating the orientation of structural units to construct efficient solar energy conversion systems.

3.
Chem Commun (Camb) ; 59(58): 8933-8936, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37401807

ABSTRACT

Here, we demonstrate deep-blue carbon dots (CDs) with luminescence centered at 415 nm and PLQY exceeding 60% via nitrogen doping. A bright and high-color-purity CDs-based light-emitting diode (CLED) is achieved with an external quantum efficiency (EQE) of 1.74%, a maximum luminance of 1155.0 cd m-2, and a colour coordinate (0.16, 0.08) closely approaching the HDTV standard color Rec.BT.709 (0.15, 0.06) specification.

4.
ACS Appl Mater Interfaces ; 15(17): 21057-21065, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079896

ABSTRACT

Photoelectrochemical (PEC) water splitting for hydrogen production using the CdTe photocathode has attracted much interest due to its excellent sunlight absorption property and energy band structure. This work presents a study of engineered interfacial energetics of CdTe photocathodes by deposition of CdS, TiO2, and Ni layers. A heterostructure CdTe/CdS/TiO2/Ni photocathode was fabricated by depositing a 100-nm n-type CdS layer on a p-type CdTe surface, with 50 nm TiO2 as a protective layer and a 10 nm Ni layer as a co-catalyst. The CdTe/CdS/TiO2/Ni photocathode exhibits a high photocurrent density (Jph) of 8.16 mA/cm2 at 0 V versus reversible hydrogen electrode (VRHE) and a positive-shifted onset potential (Eonset) of 0.70 VRHE for PEC hydrogen evolution under 100 mW/cm2 AM1.5G illumination. We further demonstrate that the CdTe/CdS p-n junction promotes the separation of photogenerated carriers, the TiO2 layer protects the electrode from corrosion, and the Ni catalyst improves the charge transfer across the electrode/electrolyte interface. This work provides new insights for designing noble metal-free photocathodes toward solar hydrogen development.

5.
Chem Commun (Camb) ; 59(12): 1637-1640, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36683529

ABSTRACT

Here, an efficient Minisci reaction of heteroarenes and unactivated C(sp3)-H alkanes was achieved using an inexpensive FeCl3 as a photocatalyst. The photogenerated chlorine radical contributed to the HAT of C-H and subsequently initiated this reaction. Surprisingly, salt water and even seawater can act as a chlorine radical source, which provided an enlightening idea for future organic synthesis methods.

6.
Chemistry ; 28(57): e202201520, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-35848162

ABSTRACT

Since the water oxidation half-reaction requires the transfer of multi-electrons and the formation of O-O bond, it's crucial to investigate the catalytic behaviours of semiconductor photoanodes. In this work, a bio-inspired copper-bipyridine catalyst of Cu(dcbpy) is decorated on the nanoporous Si photoanode (black Si, b-Si). Under AM1.5G illumination, the b-Si/Cu(dcbpy) photoanode exhibits a high photocurrent density of 6.31 mA cm-2 at 1.5 VRHE at pH 11.0, which is dramatically improved from the b-Si photoanode (1.03 mA cm-2 ) and f-Si photoanode (0.0087 mA cm-2 ). Mechanism studies demonstrate that b-Si/Cu(dcbpy) has improved light-harvesting, interfacial charge-transfer, and surface area for water splitting. More interestingly, b-Si/Cu(dcbpy) exhibits a pH-dependent water oxidation behaviour with a minimum Tafel slope of 241 mV/dec and the lowest overpotential of 0.19 V at pH 11.0, which is due to the monomer/dimer equilibrium of copper catalyst. At pH ∼11, the formation of dimeric hydroxyl-complex could form O-O bond through a redox isomerization (RI) mechanism, which decreases the required potential for water oxidation. This in-depth understanding of pH-dependent water oxidation catalyst brings insights into the design of dimer water oxidation catalysts and efficient photoanodes for solar energy conversion.

7.
Chem Commun (Camb) ; 58(63): 8810-8813, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35838543

ABSTRACT

Here, we realize a regulable cross-coupling reaction using alcohols as alkylating reagents to functionalize benzothiazoles. Two types of cross-coupling products are obtained with the highest isolated yields of up to 99% and 90% for alkyl- and acetyl-derived benzothiazoles, respectively, which opens up a broad research prospect for expanding alcohols as alkylating reagents.


Subject(s)
Alcohols , Benzothiazoles , Light , Metals , Molecular Structure
8.
Adv Mater ; 34(18): e2200537, 2022 May.
Article in English | MEDLINE | ID: mdl-35236007

ABSTRACT

To achieve high-efficiency deep-blue electroluminescence satisfying Rec.2020 standard blue gamut, two thermally activated delayed fluorescent (TADF) emitters are developed: 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (TDBA-PAS) and 10-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9,9-diphenyl-9,10-dihydroacridine (TDBA-DPAC). Inheriting from their parented organoboron multi-resonance core, both emitters show very promising deep-blue emissions with relatively narrow full width at half-maximum (FWHM, ≈50 nm in solution), high photoluminescence quantum yield (up to 92.3%), and short emission lifetime (≤2.49 µs) with fast reverse intersystem crossing (>106 s-1 ) in doped films. More importantly, replacing the spiro-centered sp3 C atom (TDBA-DPAC) with the larger-radius sp3 Si atom (TDBA-PAS), enhanced conformational heterogeneities in bulky-group-shielded TADF molecules are observed in solution, doped film, and device. Consequently, OLEDs based on TDBA-PAS retain high maximum external quantum efficiencies ≈20% with suppressed efficiency roll-off and color index close to Rec.2020 blue gamut over a wide doping range of 10-50 wt%. This study highlights a new strategy to restrain spectral broadening and redshifting and efficiency roll-off in the design of deep-blue TADF emitters.

9.
Org Lett ; 23(23): 9303-9308, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34806891

ABSTRACT

A simple and mild photoredox catalytic approach to access difluoroalkylated dioxodibenzothiazepines in high regioselectivity via radical cascade cyclization has been described herein. In contrast to previous methods, this strategy does not involve the use of transition-metal catalysts and avoids the potential disadvantages of inevitable toxicity and the tedious removal process of metal catalysts. The commercially available and inexpensive CF2 precursors, wide substrate scope, and mild reaction conditions demonstrate the practicability of this approach.

10.
Org Lett ; 23(9): 3604-3609, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33843237

ABSTRACT

In contrast with the well-developed radical thiol-ene reaction to access anti-Markovnikov-type products, the research on the catalytic Markovnikov-selective hydrothiolation of alkenes is very restricted. Because of the catalyst poisoning of metal catalysts by organosulfur compounds, limited examples of transition-metal-catalyzed thiol-ene reactions have been reported. However, in this work, a directing-group-assisted hydrothiolation of styrenes with thiols by photoredox/cobalt catalysis is found to proceed smoothly to afford Markovnikov-type sulfides with excellent regioselectivity.

11.
Chemistry ; 27(35): 9102-9111, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33871880

ABSTRACT

Efficient multifunctional materials acting as violet-blue emitters, as well as host materials for phosphorescent OLEDs, are crucial but rare due to demand that they should have high first singlet state (S1 ) energy and first triplet state (T1 ) energy simultaneously. In this study, two new violet-blue bipolar fluorophores, TPA-PI-SBF and SBF-PI-SBF, were designed and synthesized by introducing the hole transporting moiety triphenylamine (TPA) and spirobifluorene (SBF) unit that has high T1 into high deep blue emission quantum yield group phenanthroimidazole (PI). As the results, the non-doped OLEDs based on TPA-PI-SBF exhibited excellent EL performance with a maximum external quantum efficiency (EQEmax ) of 6.76 % and a violet-blue emission with Commission Internationale de L'Eclairage (CIE) of (0.152, 0.059). The device based on SBF-PI-SBF displayed EQEmax of 6.19 % with CIE of (0.159, 0.049), which nearly matches the CIE coordinates of the violet-blue emitters standard of (0.131, 0.046). These EL performances are comparable to the best reported non-doped deep or violet-blue emissive OLEDs with CIEy<0.06 in recent years. Additionally, the green, yellow and red phosphorescent OLEDs with TPA-PI-SBF and SBF-PI-SBF as host materials achieved a high EQEmax of about 20 % and low efficiency roll-off at the ultra-high luminance of 10 000 cd m-2 . These results provided a new construction strategy for designing high-performance violet-blue emitters, as well as efficient host materials for phosphorescent OLEDs.

12.
ACS Nano ; 15(3): 5502-5512, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33605135

ABSTRACT

Cubic silicon carbide (3C-SiC) is a promising photoelectrode material for solar water splitting due to its relatively small band gap (2.36 eV) and its ideal energy band positions that straddle the water redox potentials. However, despite various coupled oxygen-evolution-reaction (OER) cocatalysts, it commonly exhibits a much smaller photocurrent (<∼1 mA cm-2) than the expected value (8 mA cm-2) from its band gap under AM1.5G 100 mW cm-2 illumination. Here, we show that a short carrier diffusion length with respect to the large light penetration depth in 3C-SiC significantly limits the charge separation, thus resulting in a small photocurrent. To overcome this drawback, this work demonstrates a facile anodization method to fabricate nanoporous 3C-SiC photoanodes coupled with Ni:FeOOH cocatalyst that evidently improve the solar water splitting performance. The optimized nanoporous 3C-SiC shows a high photocurrent density of 2.30 mA cm-2 at 1.23 V versus reversible hydrogen electrode (VRHE) under AM1.5G 100 mW cm-2 illumination, which is 3.3 times higher than that of its planar counterpart (0.69 mA cm-2 at 1.23 VRHE). We further demonstrate that the optimized nanoporous photoanode exhibits an enhanced light-harvesting efficiency (LHE) of over 93%, a high charge-separation efficiency (Φsep) of 38%, and a high charge-injection efficiency (Φox) of 91% for water oxidation at 1.23 VRHE, which are significantly outperforming those its planar counterpart (LHE = 78%, Φsep = 28%, and Φox = 53% at 1.23 VRHE). All of these properties of nanoporous 3C-SiC enable a synergetic enhancement of solar water splitting performance. This work also brings insights into the design of other indirect band gap semiconductors for solar energy conversion.

13.
Angew Chem Int Ed Engl ; 59(42): 18400-18404, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32667116

ABSTRACT

Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(µ-pdt)(µ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.

14.
Sci Rep ; 6: 29851, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27417065

ABSTRACT

Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA(-)) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

15.
J Am Chem Soc ; 137(29): 9273-80, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26158688

ABSTRACT

An external oxidant-free oxidative coupling for aromatic C-H thiolation by visible-light photoredox cobalt-catalysis has been developed. Various substrates could afford benzothiazoles in good to excellent yields, and only H2 is generated as a side product. When catalytic TBAOH was used as the base, not only 2-aryl but also 2-alkylbenzothiazoles could be obtained through this novel dehydrogenative coupling reaction. This method could be scaled up and applied to the synthesis of biologically active molecules bearing benzothiazole structural scaffolds (potent antitumor agents). Furthermore, the unexpected oxidation byproduct amides, which are often generated in oxidative cyclization of thiobenzanilides, can be completely avoided. Mechanistic studies showed that the H2 originates from the substrates. The kinetic studies indicate that the interaction between the cobalt catalyst and proton might be involved in the rate-limiting process.

16.
Chemistry ; 21(8): 3187-92, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25572459

ABSTRACT

Nature uses hydrogenase enzyme to catalyze proton reduction at pH 7 with overpotentials and catalytic efficiencies that rival platinum electrodes. Over the past several years, [FeFe]-hydrogenase ([FeFe]-H2 ase) mimics have been demonstrated to be effective catalysts for light-driven H2 evolution. However, it remains a significant challenge to realize H2 production by such an artificial photosynthetic system in neutral aqueous solution. Herein, we report a new system for photocatalytic H2 evolution working in a broad pH range, especially under neutral conditions. This unique system is consisted of branched polyethylenimine (PEI)-grafted [FeFe]-H2 ase mimic (PEI-g-Fe2 S2 ), MPA-CdSe quantum dots (MPA=mercaptopropionic acid), and ascorbic acid (H2 A) in water. Due to the secondary coordination sphere of PEI, which has high buffering capacity and stabilizing ability, the system is able to produce H2 under visible-light irradiation with turnover number of 10 600 based on the Fe2 S2 active site in PEI-g-Fe2 S2 . The stability and activity are much better than that of the same system under acidic or basic conditions and they are, to the best of our knowledge, the highest known to date for photocatalytic H2 evolution from a [FeFe]-H2 ase mimic in neutral aqueous solution.


Subject(s)
Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Polyethyleneimine/chemistry , Biomimetics , Hydrogen-Ion Concentration , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Photochemical Processes , Quantum Dots , Water
17.
Nat Commun ; 4: 2695, 2013.
Article in English | MEDLINE | ID: mdl-24158139

ABSTRACT

Nature has created [FeFe]-hydrogenase enzyme as a hydrogen-forming catalyst with a high turnover rate. However, it does not meet the demands of economically usable catalytic agents because of its limited stability and the cost of its production and purification. Synthetic chemistry has allowed the preparation of remarkably close mimics of [FeFe]-hydrogenase but so far failed to reproduce its catalytic activity. Most models of the active site represent mimics of the inorganic cofactor only, and the enzyme-like reaction that proceeds within restricted environments is less well understood. Here we report that chitosan, a natural polysaccharide, improves the efficiency and durability of a typical mimic of the diiron subsite of [FeFe]-hydrogenase for photocatalytic hydrogen evolution. The turnover number of the self-assembling system increases ~4,000-fold compared with the same system in the absence of chitosan. Such significant improvements to the activity and stability of artificial [FeFe]-hydrogenase-like systems have, to our knowledge, not been reported to date.


Subject(s)
Chitosan/chemistry , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Iron/chemistry , Catalysis , Catalytic Domain , Electrons , Hydrogen-Ion Concentration , Light , Oxidation-Reduction , Photochemical Processes , Polysaccharides/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...