Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
Aesthetic Plast Surg ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995348

ABSTRACT

BACKGROUND: In Asia, the demand for cosmetic facial treatments has surged due to technological advancements, increased social acceptability, and affordability. Poly-L-lactic acid (PLLA) fillers, known for their biocompatibility and biodegradability, have emerged as a popular choice for facial contouring, yet studies specifically addressing their use in Asian populations are scarce. METHODS: This retrospective study examined 30 Chinese patients who underwent facial contouring with PLLA fillers, focusing on product composition, injection techniques, and safety measures. A comprehensive clinical evaluation was performed, including the Global Aesthetic Improvement Scale (GAIS) and Global Impression of Change Scale (GICS) for effectiveness and patient satisfaction, respectively. RESULTS: No significant difference in GAIS scores was observed between injectors and blinded evaluators over a 12-month period, indicating consistent effectiveness. Patient satisfaction remained high, with GICS scores reflecting positive outcomes. The safety profile was favorable, with no serious adverse events reported. The study highlighted the importance of anatomical knowledge to avoid complications, particularly in areas prone to blindness. CONCLUSIONS: PLLA fillers offer a safe, effective option for facial contour correction in the Asian population, achieving high patient satisfaction and maintaining results over time. The study underscores the need for tailored approaches in cosmetic procedures for Asians, considering their unique facial structures and aesthetic goals. Further research with larger, multicenter cohorts is recommended to validate these findings and explore long-term effects. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

2.
Curr Med Sci ; 44(3): 545-553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900386

ABSTRACT

OBJECTIVE: Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS: The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS: The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS: TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.


Subject(s)
Apoptosis , Colorectal Neoplasms , DNA Damage , Radiation Tolerance , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , DNA Damage/radiation effects , Radiation Tolerance/genetics , Radiation Tolerance/drug effects , Cell Line, Tumor , Male , Gene Knockdown Techniques , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction , Female , Phosphorylation , Mitogen-Activated Protein Kinase Kinases
3.
Org Lett ; 26(26): 5511-5516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38904436

ABSTRACT

1,2,4-Triazoles are privileged scaffolds for many pharmaceuticals, and methods for structurally diverse compound libraries are of current interest. Here we report an efficient coupling of α-diazoacetates with amino acid-derived alkyl N-hydroxy phthalimide esters, under metal-free conditions involving 1,8-diazabicyclo(5.4.0)undec-7-ene as the base, with which highly functionalized 1,2,4-triazoles can be obtained in excellent yields with remarkable functional group tolerance. Preliminary studies revealed that 1,2,4-triazole 3a exhibits potent inhibition of tyrosinase activities in melanoma B16F10 cell lines, demonstrating promising skin-whitening properties.


Subject(s)
Amino Acids , Esters , Triazoles , Animals , Mice , Amino Acids/chemistry , Amino Acids/chemical synthesis , Cycloaddition Reaction , Esters/chemistry , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Triazoles/chemistry , Triazoles/chemical synthesis , Triazoles/pharmacology , Phthalimides/chemistry
4.
Medicine (Baltimore) ; 103(26): e38618, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941435

ABSTRACT

RATIONALE: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare but serious complication in patients with malignancy; its main manifestation includes acute pulmonary hypertension with severe respiratory distress. More than 200 cases have been reported since it was first identified in 1990. PTTM accounts for approximately 0.9% to 3.3% of deaths due to malignancy, but only a minority of patients are diagnosed ante-mortem, with most patients having a definitive diagnosis after autopsy. PATIENT CONCERNS: Two middle-aged women both died within a short period of time due to progressive dyspnea and severe pulmonary hypertension. DIAGNOSES: One patient was definitively confirmed as a gastrointestinal malignant tumor by liver puncture biopsy pathology. Ultimately, the clinical diagnosis was pulmonary tumor thrombotic microangiopathy. INTERVENTIONS: The patient was treated symptomatically with oxygen, diuresis, and anticoagulation, while a liver puncture was perfected to clarify the cause. OUTCOMES: Two cases of middle-aged female patients with rapidly progressive pulmonary hypertension and respiratory failure resulted in death with malignant neoplasm. LESSONS: PTTM has a rapid onset and a high morbidity and mortality rate. Our clinicians need to be more aware of the need for timely diagnosis through a targeted clinical approach, leading to more targeted treatment and a better prognosis.


Subject(s)
Thrombotic Microangiopathies , Humans , Female , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/diagnosis , Middle Aged , Fatal Outcome , Hypertension, Pulmonary/etiology , Gastrointestinal Neoplasms/complications , Gastrointestinal Neoplasms/pathology , Lung Neoplasms/complications , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis
5.
Phytomedicine ; 130: 155744, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38763011

ABSTRACT

BACKGROUND: Aging is associated with learning and memory disorder, affecting multiple brain areas, especially the hippocampus. Previous studies have demonstrated trilobatin (TLB), as a natural food additive, can extend the life of Caenorhabditis elegans and exhibit neuroprotection in Alzheimer's disease mice. However, the possible significance of TLB in anti-aging remains elusive. PURPOSE: This study aimed to delve into the physiological mechanism by which TLB ameliorated aging-induced cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS: 6-month-old SAMP8 mice were administrated with TLB (5, 10, 20 mg/kg/day, i.g.) for 3 months. The therapeutic effect of TLB on aging-induced cognitive impairment was assessed in mice using behavioral tests and aging score. The gut microbiota composition in fecal samples was analyzed by metagenomic analysis. The protective effects of TLB on blood-brain barrier (BBB) and intestinal barrier were detected by transmission electron microscope, H&E staining and western blot (WB) assay. The inhibitive effects of TLB on inflammation in brain and intestine were assessed using immunofluorescence, WB and ELISA assay. Molecular docking and surface plasma resonance (SPR) assay were utilized to investigate interaction between TLB and sirtuin 2 (SIRT2). RESULTS: Herein, the findings exhibited TLB mitigated aging-induced cognitive impairment, neuron injury and neuroinflammation in hippocampus of aged SAMP8 mice. Moreover, TLB treatment repaired imbalance of gut microbiota in aged SAMP8 mice. Furthermore, TLB alleviated the damage to BBB and intestinal barrier, concomitant with reducing the expression of SIRT2, phosphorylated levels of c-Jun NH2 terminal kinases (JNK) and c-Jun, and expression of MMP9 protein in aged SAMP8 mice. Molecular docking and SPR unveiled TLB combined with SIRT2 and down-regulated SIRT2 protein expression. Mechanistically, the potential mechanism of SIRT2 in TLB that exerted anti-aging effect was validated in vitro. As expected, SIRT2 deficiency attenuated phosphorylated level of JNK in HT22 cells treated with d-galactose. CONCLUSION: These findings reveal, for the first time, SIRT2-mediated brain-gut barriers contribute to aging and aging-related diseases, and TLB can rescue aging-induced cognitive impairment by targeting SIRT2 and restoring gut microbiota disturbance to mediate the brain-gut axis. Overall, this work extends the potential application of TLB as a natural food additive in aging-related diseases.


Subject(s)
Aging , Brain-Gut Axis , Cognitive Dysfunction , Gastrointestinal Microbiome , Sirtuin 2 , Animals , Gastrointestinal Microbiome/drug effects , Cognitive Dysfunction/drug therapy , Mice , Aging/drug effects , Sirtuin 2/metabolism , Male , Brain-Gut Axis/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Molecular Docking Simulation , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal
6.
J Med Chem ; 67(11): 8932-8961, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814290

ABSTRACT

This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.


Subject(s)
Antifungal Agents , Candida albicans , Microbial Sensitivity Tests , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Candida albicans/drug effects , Hemolysis/drug effects , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacology
7.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710854

ABSTRACT

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Subject(s)
Antioxidants , Bacillus amyloliquefaciens , Birds , Fermentation , Probiotics , Solubility , Bacillus amyloliquefaciens/chemistry , Bacillus amyloliquefaciens/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Animals , Probiotics/chemistry , Probiotics/metabolism , Birds/microbiology
8.
J Clin Pharmacol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659369

ABSTRACT

Previous studies found that histamine H2 receptor antagonists (H2RAs) had blood pressure lowering and cardioprotective effects, but the impact of H2RAs on the survival outcomes of critically ill patients with essential hypertension is still unclear. The aim of this study was to investigate the association of H2RAs exposure with all-cause mortality in patients with essential hypertension based on Medical Information Mart for Intensive Care III database. A total of 17,739 patients were included, involving 8482 H2RAs users and 9257 non-H2RAs users. Propensity score matching (PSM) was performed to improve balance between 2 groups that were exposed to H2RAs or not. Kaplan-Meier survival curves were used to compare the cumulative survival rates and multivariable Cox regression models were performed to evaluate the association between H2RAs exposure and all-cause mortality. After 1:1 PSM, 4416 pairs of patients were enrolled. The results revealed potentially significant association between H2RAs exposure and decreased 30-day, 90-day, and 1-year mortalities in multivariate analyses (HR = 0.783, 95% CI: 0.696-0.882 for 30-day; HR = 0.860, 95% CI: 0.778-0.950 for 90-day; and HR = 0.883, 95% CI: 0.811-0.961 for 1-year mortality, respectively). Covariate effect analyses showed that the use of H2RAs was more beneficial in essential hypertension patients with age ≥ 60, BMI ≥ 25 kg/m2, coronary arteriosclerosis, stroke, and acute kidney failure, respectively. In conclusion, H2RAs exposure was related to lower mortalities in critically ill patients with essential hypertension, which provided novel potential strategy for the use of H2RAs in essential hypertension patients.

9.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631158

ABSTRACT

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Subject(s)
Citrus , Gene Expression Regulation, Plant , Magnesium , Seedlings , Citrus/metabolism , Citrus/genetics , Seedlings/metabolism , Seedlings/genetics , Seedlings/growth & development , Magnesium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Magnesium Deficiency/metabolism , Plant Leaves/metabolism , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
10.
Talanta ; 274: 125999, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583327

ABSTRACT

The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Entropy , Metal-Organic Frameworks , MicroRNAs , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Metal-Organic Frameworks/chemistry , DNA/chemistry , Limit of Detection , Electrodes , DNA Probes/chemistry , DNA Probes/genetics , Ferrous Compounds/chemistry , Metallocenes/chemistry
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 131-138, 2024 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-38436309

ABSTRACT

OBJECTIVES: To investigate the clinical characteristics and prognosis of pneumococcal meningitis (PM), and drug sensitivity of Streptococcus pneumoniae (SP) isolates in Chinese children. METHODS: A retrospective analysis was conducted on clinical information, laboratory data, and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country. RESULTS: Among the 160 children with PM, there were 103 males and 57 females. The age ranged from 15 days to 15 years, with 109 cases (68.1%) aged 3 months to under 3 years. SP strains were isolated from 95 cases (59.4%) in cerebrospinal fluid cultures and from 57 cases (35.6%) in blood cultures. The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87) and 27% (21/78), respectively. Fifty-five cases (34.4%) had one or more risk factors for purulent meningitis, 113 cases (70.6%) had one or more extra-cranial infectious foci, and 18 cases (11.3%) had underlying diseases. The most common clinical symptoms were fever (147 cases, 91.9%), followed by lethargy (98 cases, 61.3%) and vomiting (61 cases, 38.1%). Sixty-nine cases (43.1%) experienced intracranial complications during hospitalization, with subdural effusion and/or empyema being the most common complication [43 cases (26.9%)], followed by hydrocephalus in 24 cases (15.0%), brain abscess in 23 cases (14.4%), and cerebral hemorrhage in 8 cases (5.0%). Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old, with rates of 91% (39/43) and 83% (20/24), respectively. SP strains exhibited complete sensitivity to vancomycin (100%, 75/75), linezolid (100%, 56/56), and meropenem (100%, 6/6). High sensitivity rates were also observed for levofloxacin (81%, 22/27), moxifloxacin (82%, 14/17), rifampicin (96%, 25/26), and chloramphenicol (91%, 21/23). However, low sensitivity rates were found for penicillin (16%, 11/68) and clindamycin (6%, 1/17), and SP strains were completely resistant to erythromycin (100%, 31/31). The rates of discharge with cure and improvement were 22.5% (36/160) and 66.2% (106/160), respectively, while 18 cases (11.3%) had adverse outcomes. CONCLUSIONS: Pediatric PM is more common in children aged 3 months to under 3 years. Intracranial complications are more frequently observed in children under 1 year old. Fever is the most common clinical manifestation of PM, and subdural effusion/emphysema and hydrocephalus are the most frequent complications. Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates. Adverse outcomes can be noted in more than 10% of PM cases. SP strains are high sensitivity to vancomycin, linezolid, meropenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Subject(s)
Empyema , Hydrocephalus , Meningitis, Pneumococcal , Subdural Effusion , Infant , Female , Male , Humans , Child , Infant, Newborn , Adolescent , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/epidemiology , Meropenem , Vancomycin , Levofloxacin , Linezolid , Moxifloxacin , Retrospective Studies , Rifampin , Streptococcus pneumoniae , Chloramphenicol
12.
Huan Jing Ke Xue ; 45(2): 780-791, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471917

ABSTRACT

Rain-source urban rivers have the characteristics of small water capacity, lack of dynamic water supply, and being easily polluted. This study analyzed the spatial and temporal distribution characteristics of river water quality and the response of characteristic pollutants to rainfall based on daily rainfall data and 21 water quality indicators of nine major river basins in Shenzhen (excluding Shenzhen-Shantou) from 2015 to 2021 by using the single-factor assessment method, comprehensive pollution index method, hierarchical cluster analysis, and Pearson correlation. The results showed that: ① in 2015, the water quality of most sections in the whole region was inferior Class V water. After October 2018, the overall water quality of rivers was greatly improved, which was consistent with the background of Shenzhen's special water control activities in 2018. By 2021, the water quality of approximately 62% of sections reached Class Ⅰ-Ⅲ water standards. ② The water pollution in the densely populated western part of Shenzhen was more serious than that in the eastern part, and the water pollution in the lower reaches of the estuaries and tributaries was more serious than that in the upper reaches. ③ The water quality of the Pingshan River, Guanlan River, Longgang River, and Maozhou River was significantly affected by rainfall. ④ The main characteristic pollution indexes of the Shenzhen River were DO, permanganate index, COD, BOD5, NH4+-N, TP, petroleum, and anionic surfactant. For the Pingshan River and Longgang River, rainfall increased the concentrations of TP and NH4+-N. For the Maozhou River, rainfall increased the concentrations of TP and COD. For the Shenzhen River, rainfall increased the concentrations of COD, TP, and NH4+-N. The above results reveal the spatio-temporal variation in rain-source river water quality in Shenzhen and its response to non-point source pollution caused by rainfall events and provide a scientific reference for building a higher quality water environment in Shenzhen.

13.
Eur J Med Chem ; 265: 116107, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171147

ABSTRACT

Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.


Subject(s)
Anti-Bacterial Agents , Topoisomerase II Inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , DNA Gyrase/metabolism , DNA Topoisomerase IV , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Nitriles/chemistry , Nitriles/pharmacology
14.
Arthritis Care Res (Hoboken) ; 76(3): 376-384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37779486

ABSTRACT

OBJECTIVE: The effects of transcranial direct current stimulation (tDCS) in the treatment of knee osteoarthritis (KOA) is still unclear. The objective is to evaluate the efficacy and safety of tDCS in improving symptoms in patients with KOA. METHODS: The following electronic databases were searched for eligible randomized controlled trials (RCTs): PubMed, Embase, Web of Science, and the Cochrane Library. The search was performed from the inception dates to April 30, 2023. Data extraction and quality assessment were performed by two independent reviewers. Standard mean differences (SMDs) with 95% confidence intervals (95% CIs) for pooled data were calculated. A random-effects model was used for the data analyses. The primary outcomes were pain and physical function. Secondary outcomes included stiffness, mobility performance, quality of life, pressure pain tolerance, and plasma levels of brain-derived neurotrophic factor (BDNF). RESULTS: This meta-analysis included 13 RCTs. tDCS was significantly associated with pain decrease compared with sham tDCS (SMD = -0.62, 95% CI -0.87 to -0.37, P < 0.00001). When comparing tDCS plus other non-tDCS with sham tDCS plus other non-tDCS, there was no longer a significant association with pain decrease (SMD = -0.45, 95% CI -1.08 to 0.17, P = 0.16). The changes in physical function were not significantly different between the tDCS and sham tDCS groups (SMD = -0.09, 95% CI -0.56 to 0.38, P = 0.71). When comparing tDCS plus other non-tDCS with sham tDCS plus other non-tDCS, there was still no significant association with improvement in physical function (SMD = -0.66, 95% CI -1.63 to 0.30, P = 0.18). There was no significant difference with improvement in stiffness (SMD = -0.21, 95% CI -0.77 to 0.34, P = 0.45), mobility performance (SMD = 4.58, 95% CI -9.21 to 18.37, P = 0.51), quality of life (SMD = -7.01, 95% CI -22.61 to 8.59, P = 0.38), and pressure pain tolerance (SMD = 0.30, 95% CI -0.09 to 0.69, P = 0.13). There was a statistically significant reduction in plasma levels of BDNF (SMD = -13.57, 95% CI -24.23 to -2.92, P = 0.01). CONCLUSION: In conclusion, tDCS could significantly alleviate pain, but it might have no efficacy in physical function, stiffness, mobility performance, quality of life, and pressure pain tolerance among patients with KOA.


Subject(s)
Osteoarthritis, Knee , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/adverse effects , Brain-Derived Neurotrophic Factor , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/therapy , Randomized Controlled Trials as Topic , Pain
15.
Pharmacotherapy ; 44(2): 197-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37986168

ABSTRACT

Urinary tract infections (UTIs) commonly affect many patient populations. Recurrent UTIs (rUTIs) can be particularly problematic and lead to potential hospitalizations, multiple antibiotic courses, and have a potential negative impact on quality of life. To prevent UTIs, antibiotics are frequently used for prophylaxis; however, antibiotic prophylaxis has notable untoward consequences including but not limited to potential adverse effects and development of antibiotic resistance. Methenamine, an antiseptic agent initially available in 1967, has re-emerged as a potential option for UTI prophylaxis in various populations, including older adults and renal transplant recipients. The objective of this systematic review was to evaluate the clinical effectiveness and safety of methenamine for UTI prophylaxis. A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance was performed. A PubMed, Embase, and Cochrane library search was conducted to identify relevant English-language studies evaluating methenamine for UTI prophylaxis including randomized controlled trials, case-control studies, and meta-analyses through June 2023. Articles were excluded if the studies did not primarily describe or evaluate methenamine for UTI prophylaxis, were commentaries/viewpoints articles, point prevalence studies, review articles, studies that evaluated methenamine used with another agent, and any duplicate publications from searched databases. A total of 11 articles were identified for inclusion. This systematic review suggests methenamine generally appears to be an effective and well-tolerated antibiotic-sparing option for UTI prophylaxis. Furthermore, the pharmacology, dosage and formulation, warnings, precautions, and safety considerations of methenamine that provide potential clinical considerations regarding its use for UTI prophylaxis are described. Further studies are needed to evaluate the clinical utility of methenamine for UTI prophylaxis.


Subject(s)
Methenamine , Urinary Tract Infections , Humans , Aged , Methenamine/therapeutic use , Quality of Life , Urinary Tract Infections/drug therapy , Urinary Tract Infections/prevention & control , Urinary Tract Infections/etiology , Anti-Bacterial Agents/adverse effects , Treatment Outcome , Antibiotic Prophylaxis/adverse effects
16.
Acta Pharmaceutica Sinica ; (12): 336-349, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016648

ABSTRACT

Small-molecule phenolic substances widely exist in animals and plants, and have some shared biological activities. The metabolism of phenylalanine and tyrosine in the human body, and especially the metabolism of catecholamine neurotransmitters, produces endogenous small-molecule phenols. Endogenous small-molecule phenolic substances are functionally related to the important physiological processes and the occurrence of mental diseases in humans and some animals, which are systematically sorts and summarized in this review. Integrating the previous experimental research and literature analysis on natural small-molecule phenols by our research group, the understanding of the hypothesis that "small-molecule phenol are pharmacological signal carriers" was deepened. Based on above, the concept of "phenolomics" was further proposed, analyzed the research direction and research content which can bring into the knowledge framework of phenolomics. The induction of phenolomics will provide wider perspectives on explaining the pharmacological mechanism of drugs, discovering new drug targets, and finding biomarkers of mental diseases.

17.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138466

ABSTRACT

The polysaccharides extracted from Aspidopterys obcordata are thought to have anti-urolithiasis activity in Drosophila kidney stones. This study aimed to assess the effects of different extraction solvents on the yield, chemical composition, and bioactivity of polysaccharides from A. obcordata. A. obcordata polysaccharides were extracted by using four solutions: hot water, HCl solution, NaOH solution, and 0.1 M NaCl. The results revealed that the extraction solvents significantly influenced the extraction yields, molecular weight distribution, monosaccharide compositions, preliminary structural characteristics, and microstructures of polysaccharides. The NaOH solution's extraction yield was significantly higher than the other extraction methods. Vitro antioxidant activity assays revealed that the NaOH solution extracted exhibited superior scavenging abilities towards DPPH and ABTS radicals and higher FRAP values than other polysaccharides. The vitro assays conducted for calcium oxalate crystallization demonstrated that four polysaccharides exhibited inhibitory effects on the nucleation and aggregation of calcium oxalate crystals, impeded calcium oxalate monohydrate growth, and induced calcium oxalate dihydrate formation. The NaOH solution extracted exhibited the most pronounced inhibition of calcium oxalate crystal nucleation, while the hot water extracted demonstrated the most significant suppression of calcium oxalate crystal aggregation. Therefore, it can be inferred that polysaccharides extracted with NaOH solution exhibited significant potential as a viable approach for extracting polysaccharides from stems due to their superior yield and the remarkable bioactivity of the resulting products.


Subject(s)
Calcium Oxalate , Polysaccharides , Calcium Oxalate/chemistry , Solvents , Sodium Hydroxide , Polysaccharides/pharmacology , Polysaccharides/chemistry , Water
18.
Front Pharmacol ; 14: 1273640, 2023.
Article in English | MEDLINE | ID: mdl-38035020

ABSTRACT

Background: Our previous study reported that histamine H2 receptor antagonists (H2RAs) exposure was associated with decreased mortality in critically ill patients with heart failure (HF) through the same pharmacological mechanism as ß-blockers. However, population-based clinical study directly comparing the efficacy of H2RAs and ß-blockers on mortality of HF patients are still lacking. This study aims to compare the association difference of H2RAs and ß-blockers on mortality in critically ill patients with HF using the Medical Information Mart for Intensive Care III database (MIMIC-III). Methods: Study population was divided into 4 groups: ß-blockers + H2RAs group, ß-blockers group, H2RAs group, and Non-ß-blockers + Non-H2RAs group. Kaplan-Meier curves and multivariable Cox regression models were employed to evaluate the differences of all-cause mortalities among the 4 groups. Propensity score matching (PSM) was used to increase comparability of four groups. Results: A total of 5593 patients were included. After PSM, multivariate analyses showed that patients in H2RAs group had close all-cause mortality with patients in ß-blockers group. Furthermore, 30-day, 1-year, 5-year and 10-year all-mortality of patients in ß-blockers + H2RAs group were significantly lower than those of patients in ß-blockers group, respectively (HR: 0.64, 95%CI: 0.50-0.82 for 30-day; HR: 0.80, 95%CI: 0.69-0.93 for 1-year mortality; HR: 0.83, 95%CI: 0.74-0.93 for 5-year mortality; and HR: 0.85, 95%CI: 0.76-0.94 for 10-year mortality, respectively). Conclusion: H2RAs exposure exhibited comparable all-cause mortality-decreasing effect as ß-blockers; and, furthermore, H2RAs and ß-blockers had additive or synergistic interactions to improve survival in critically ill patients with HF.

19.
Phytomedicine ; 120: 155059, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672856

ABSTRACT

BACKGROUND: Fulminant hepatic failure (FHF) lacks efficient therapies notwithstanding increased comprehending of the inflammatory response and oxidative stress play crucial roles in the pathogenesis of this type of hepatic damage. Trilobatin (TLB), a naturally occurring food additive, is endowed with anti-inflammation and antioxidant properties. PURPOSE: In current study, we evaluated the effect of TLB on FHF with a mouse model with d-galactosamine/lipopolysaccharide (GalN/LPS)-induced FHF and LPS-stimulated Kupffer cells (KCs) injury. METHODS: Mice were randomly divided into seven groups: control group, TLB 40 mg/kg + control group, GalN/LPS group, TLB 10 mg/kg + GalN/LPS group, TLB 20 mg/kg + GalN/LPS group, TLB 40 mg/kg + GalN/LPS group, bifendate 150 mg/kg + GalN/LPS group. The mice were administered intragastrically TLB (10, 20 and 40 mg/kg) for 7 days (twice a day) prior to injection of GalN (700 mg/kg)/LPS (100 µg/kg). The KCs were pretreated with TLB (2.5, 5, 10 µM) for 2 h or its analogue (10 µM) or COX2 inhibitor (10 µM), and thereafter challenged by LPS (1 µg/ml) for 24 h. RESULTS: TLB effectively rescued GalN/LPS-induced FHF. Furthermore, TLB inhibited TLR 4/NLRP3/pyroptosis pathway, and caspase 3-dependent apoptosis pathway, along with reducing excessive cellular and mitochondrial ROS generation and enhancing mitochondrial biogenesis. Intriguingly, TLB directly bound to COX2 as reflected by transcriptomics, molecular docking technique and surface plasmon resonance assay. Furthermore, TLB failed to attenuate LPS-induced inflammation and oxidative stress in KCs in the absence of COX2. CONCLUSION: Our findings discover a novel pharmacological effect of TLB: protecting against FHF-induced pyroptosis and apoptosis through mediating ROS/TLR4/NLRP3 signaling pathway and reducing inflammation and oxidative stress. TLB may be a promising agent with outstanding safety profile to treat FHF.


Subject(s)
Liver Failure, Acute , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Cyclooxygenase 2 , Reactive Oxygen Species , Toll-Like Receptor 4 , Lipopolysaccharides , Molecular Docking Simulation , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Signal Transduction
20.
Chempluschem ; 88(11): e202300387, 2023 11.
Article in English | MEDLINE | ID: mdl-37728035

ABSTRACT

Colon cancer is emerging as one of the most common cancers worldwide, ranking in the top three in morbidity and mortality. Oral methotrexate (MTX) has been employed as a first-line treatment for various cancers, such as colon, breast, and lung cancer. However, the complexity and particularity of the gastrointestinal microenvironment and the limitations of MTX itself, including severe adverse effects and instability, are the main obstacles to the safe delivery of MTX to colon tumor sites. Herein, an innovative oral administrated anticancer therapeutic MTX@Am7CD/SDS NPs equipped with both pH and temperature sensitivity, which could effectively prevent MTX@Am7CD/SDS NPs from being degraded in the acidic environment mimicking the stomach and small intestine, thus harboring the potential to accumulate at the site of colon lesions and further release intestinal drug under mild conditions. In cellular assays, compared with free MTX, MTX@Am7CD/SDS NPs showed a favorable tumor inhibition effect on three tumor cell lines, as well as excellent cell uptake and apoptosis-inducing effect on SW480 cells. Therefore, this work provides a feasible solution for the safe use of MTX in the treatment of colon cancer and even other intestinal diseases.


Subject(s)
Colonic Neoplasms , Nanoparticles , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Drug Delivery Systems , Delayed-Action Preparations , Colonic Neoplasms/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...