Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743266

ABSTRACT

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Subject(s)
Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
2.
Plant Physiol Biochem ; 211: 108721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739961

ABSTRACT

Pongamia (Millettia pinnata Syn. Pongamia pinnata), a mangrove associate plant, exhibits good stress tolerance, making it a treasure of genetic resources for crop improvement. NAC proteins are plant-specific transcription factors, which have been elucidated to participate in the regulation and tolerance of abiotic stresses (such as salt and drought). Here, we identified a salt-induced gene from Pongamia, MpNAC1, which encodes an NAC factor sharing five highly conserved domains with other NACs and exhibits close homology to AtNAC19/AtNAC55/AtNAC72 in Arabidopsis. MpNAC1 showed nuclear localization and transcriptional activator activity. MpNAC1-overexpressing Arabidopsis exhibited significantly stronger salt and drought tolerance compared with wild-type plants. The expression levels of stress-responsive genes were activated in transgenic Arabidopsis. Furthermore, the heterologous expression of MpNAC1 also enhanced the salt and drought tolerance of transgenic rice. The major agronomic traits, such as plant height and tiller number, panicle length, grain size, and yield, were similar between the transgenic lines and wild type under normal field growth conditions. RNA-Seq analysis revealed that MpNAC1 significantly up-regulated stress-responsive genes and activated the biosynthesis of secondary metabolites such as flavonoids, resulting in increased stress tolerance. Taken together, the MpNAC1 increased salt and drought stress tolerance in transgenic plants and did not retard the plant growth and development under normal growth conditions, suggesting the potential of MpNAC1 in breeding stress-resilient crops.


Subject(s)
Arabidopsis , Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Transcription Factors , Arabidopsis/genetics , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Tolerance/genetics , Millettia/genetics , Millettia/metabolism , Stress, Physiological/genetics
3.
Sci Data ; 10(1): 921, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129455

ABSTRACT

Santalum album is a well-known aromatic and medicinal plant that is highly valued for the essential oil (EO) extracted from its heartwood. In this study, we present a high-quality chromosome-level genome assembly of S. album after integrating PacBio Sequel, Illumina HiSeq paired-end and high-throughput chromosome conformation capture sequencing technologies. The assembled genome size is 207.39 M with a contig N50 of 7.33 M and scaffold N50 size of 18.31 M. Compared with three previously published sandalwood genomes, the N50 length of the genome assembly was longer. In total, 94.26% of the assembly was assigned to 10 pseudo-chromosomes, and the anchor rate far exceeded that of a recently released value. BUSCO analysis yielded a completeness score of 94.91%. In addition, we predicted 23,283 protein-coding genes, 89.68% of which were functionally annotated. This high-quality genome will provide a foundation for sandalwood functional genomics studies, and also for elucidating the genetic basis of EO biosynthesis in S. album.


Subject(s)
Genome, Plant , Oils, Volatile , Santalum , Sesquiterpenes , Chromosomes , Genomics , Phylogeny , Santalum/genetics
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958798

ABSTRACT

Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides' responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution.


Subject(s)
Abscisic Acid , Aizoaceae , Abscisic Acid/metabolism , Droughts , Phylogeny , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Saline Solution , Plant Proteins/genetics , Plant Proteins/metabolism , Soil
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003462

ABSTRACT

Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.


Subject(s)
Anthozoa , Cordia , Animals , Phylogeny , Anthozoa/genetics , Genome , Repetitive Sequences, Nucleic Acid , Molecular Sequence Annotation , Chromosomes
6.
J Plant Physiol ; 288: 154060, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542942

ABSTRACT

Abiotic stress, such as salt and drought stress, seriously limits plant growth and crop yield. Abscisic acid (ABA) is essential in regulating plant responses to abiotic stress via signal perception, transduction, and transcriptional regulation. Pongamia (Millettia pinnata) is a kind of semi-mangrove plant with strong stress tolerance and can grow in fresh and sea water. However, the molecular mechanism of the ABA signaling pathway mediating the environmental tolerance of Pongamia is still scarce so far. AITR (ABA-Induced Transcription Repressor) was a recently identified small conserved family of transcription factor in angiosperms, which played controversial roles in response to abiotic stresses in different species. Here, we identified an ABA-induced gene, MpAITR1, which encoded a nucleus localization transcriptional factor in Pongamia. MpAITR1 was highly induced by ABA and salt treatments in roots and leaves. Heterologous expression of MpAITR1 in Arabidopsis increased sensitivity to ABA, moreover, enhanced tolerance to salt and drought stress. The expression levels of some ABA-responsive and stress-responsive genes were altered in transgenic plants compared to wild-type plants under the ABA, salt, and drought stress, which was consistent with the stress-tolerant phenotype of transgenic plants. These results reveal that MpAITR1 positively modulates ABA signaling pathways and enhances the tolerance to salt and drought stress by regulating downstream target genes. Taken together, MpAITR1 from the semi-mangrove plant Pongamia serves as a potential candidate for stress-tolerant crop breeding.


Subject(s)
Arabidopsis , Millettia , Abscisic Acid/metabolism , Arabidopsis/metabolism , Millettia/genetics , Millettia/metabolism , Drought Resistance , Sodium Chloride/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/physiology , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
J Environ Manage ; 344: 118512, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37384992

ABSTRACT

Poor regeneration of natural vegetation is a major factor contributing to the degradation of tropical coral islands. Soil seed banks (SSB) are important for maintaining the resilience of plant communities. However, the community characteristics and spatial distribution of SSBs and the controlling factors along human disturbance on coral islands are unclear. To fill this gap, we measured the community structure and spatial distributions of forest SSBs on three coral islands in the South China Sea, with varying degrees of human disturbance. The results showed that strong human disturbance increased the diversity, richness, and density of SSBs, as well as increased the richness of invasive species. With increased human disturbance, the heterogeneity pattern of SSBs spatial distribution changed from difference between forest east and west to forest center and edge. The similarity between the SSBs and above-ground vegetation also increased, and the distribution of invasive species extended from the edge to the central area of the forests, demonstrating that human disturbance limited the outward dispersal of seeds of resident species but increased the inward dispersal of seeds of invasive species. Interaction between soil properties, plant characteristics, and human disturbance explained 23-45% of the spatial variation of forest SSBs on the coral islands. However, human disturbance reduced the correlations of plant communities and spatial distribution of SSBs with soil factors (i.e., available phosphorus and total nitrogen) and increased the correlations of the community characteristics of SSB with landscape heterogeneity index, road distance, and shrub and litter cover. Resident seed dispersal on tropical coral islands might be enhanced by reducing building height, constructing buildings in down-wind locations, and preserving corridors that support animal movement among forest fragments.


Subject(s)
Anthozoa , Ecosystem , Animals , Humans , Soil/chemistry , Seed Bank , Anthropogenic Effects , Islands , Forests , Plants , Seeds , Introduced Species
8.
Plant Physiol Biochem ; 200: 107786, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257408

ABSTRACT

Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.


Subject(s)
Canavalia , Cysteine , Humans , Cysteine/metabolism , Canavalia/genetics , Canavalia/metabolism , Saccharomyces cerevisiae/metabolism , Phylogeny , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Multigene Family
9.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047333

ABSTRACT

Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya.


Subject(s)
Cactaceae , Stress, Physiological , Stress, Physiological/genetics , Proteins/metabolism , Cactaceae/metabolism , Salt Stress , Zinc Fingers/genetics , Genomics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
10.
BMC Plant Biol ; 23(1): 200, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37069496

ABSTRACT

Casuarina equisetifolia is drought tolerant, salt tolerant, and able to grow in barren environments. It is often used to reduce wind damage, to prevent sand erosion, and to help establish plant communities in tropical and subtropical coastal zones. To determine the basis for its drought tolerance, we conducted transcriptomic and metabolic analyses of young branchlets under a non-drought treatment (D_0h) and 2-, 12-, and 24-h-long drought treatments (D_2h, D_12h, and D_24h). A total of 5033 and 8159 differentially expressed genes (DEGs) were identified in D_2h/D_0h and D_24h/D_0h. These DEGs were involved in plant hormone signal transduction, jasmonic acid (JA) biosynthesis, flavonoid biosynthesis, and phenylpropanoid biosynthesis. A total of 148 and 168 differentially accumulated metabolites (DAMs) were identified in D_12h/D_0h and D_24h/D_0h, which were mainly amino acids, phenolic acids, and flavonoids. In conclusion, C. equisetifolia responds to drought by regulating plant hormone signal transduction and the biosynthesis of JA, flavonoid, and phenylpropanoid. These results increase the understanding of drought tolerance in C. equisetifolia at both transcriptional and metabolic levels and provide new insights into coastal vegetation reconstruction and management.


Subject(s)
Plant Growth Regulators , Transcriptome , Gene Expression Profiling/methods , Metabolome , Droughts , Gene Expression Regulation, Plant
11.
Ecol Evol ; 12(11): e9508, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36415875

ABSTRACT

Hainan Island had experienced several cold-warm and dry-humid fluctuations since the Late Pleistocene period, resulting in separating and connecting from the mainland several times with the cyclic rise and fall of sea level. The fluctuations can change the biota and ecological environment in the island. Cycas taiwaniana Carruthers is endemic to Hainan Island and is classified as endangered by the International Union for Conservation of Nature (IUCN). To comprehensively understand the genetic dynamics of C. taiwaniana, we sampled 12 wild populations in Hainan Island and one cultivated population in Fujian province, and analyzed the genetic diversity, genetic structure, and demographic history based on the molecular data. Results revealed that C. taiwaniana had relatively low genetic diversity and high genetic differentiation. Haplotypes of C. taiwaniana diversified during the Pleistocene based on the chloroplast DNA (cpDNA) and the concatenated nuclear DNA (nDNA) data. Genetic cluster analyses based on the microsatellite (SSR) data showed that the 12 wild populations were separated into three clusters which could be three evolutionary significant units (ESUs), indicating three basic units of protection were identified. Moreover, we also confirmed the cultivated population FJ derived from the DLS1-GSL clade. Demographic inference from different data was discordant, but overall, it uncovered that C. taiwaniana had experienced population contraction events twice during the Pleistocene and Holocene, and then expanded recently. Our study elucidated the population genetic characteristics of C. taiwaniana, and guided us to develop targeted conservation and management strategies for this endangered species.

12.
Genes (Basel) ; 13(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36360226

ABSTRACT

In plants, the Gibberellic Acid-Stimulated Arabidopsis (GASA) gene family is unique and responds to ubiquitous stress and hormones, playing important regulatory roles in the growth and development of plants, as well as in the resistance mechanisms to biotic and abiotic stress. In this study, a total of 23 CrGASAs were characterized in C. rosea using a genome-wide approach, and their phylogenetic relationships, gene structures, conserved motifs, chromosomal locations, gene duplications, and promoter regions were systematically analyzed. Expression profile analysis derived from transcriptome data showed that CrGASAs are expressed at higher levels in the flowers or fruit than in the leaves, vines, and roots. The expression of CrGASAs also showed habitat- and environmental-stress-regulated patterns in C. rosea analyzed by transcriptome and quantitative reverse transcription PCR (qRT-PCR). The heterologous induced expression of some CrGASAs in yeast enhanced the tolerance to H2O2, and some CrGASAs showed elevated heat tolerance and heavy metal (HM) Cd/Cu tolerance. These findings will provide an important foundation to elucidate the biological functions of CrGASA genes, especially their role in the ecological adaptation of specific plant species to tropical islands and reefs in C. rosea.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Canavalia/genetics , Canavalia/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism , Hydrogen Peroxide/metabolism
13.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293211

ABSTRACT

Heat shock transcription factors (Hsfs) are key regulators in plant heat stress response, and therefore, they play vital roles in signal transduction pathways in response to environmental stresses, as well as in plant growth and development. Canavalia rosea (Sw.) DC. is an extremophile halophyte with good adaptability to high temperature and salt-drought tolerance, and it can be used as a pioneer species for ecological reconstruction on tropical coral islands. To date, very little is known regarding the functions of Hsfs in the adaptation mechanisms of plant species with specialized habitats, especially in tropical leguminous halophytes. In this study, a genome-wide analysis was performed to identify all the Hsfs in C. rosea based on whole-genome sequencing information. The chromosomal location, protein domain or motif organization, and phylogenetic relationships of 28 CrHsfs were analyzed. Promoter analyses indicated that the expression levels of different CrHsfs were precisely regulated. The expression patterns also revealed clear transcriptional changes among different C. rosea tissues, indicating that the regulation of CrHsf expression varied among organs in a developmental or tissue-specific manner. Furthermore, the expression levels of most CrHsfs in response to environmental conditions or abiotic stresses also implied a possible positive regulatory role of this gene family under abiotic stresses, and suggested roles in adaptation to specialized habitats such as tropical coral islands. In addition, some CrHsfAs were cloned and their possible roles in abiotic stress tolerance were functionally characterized using a yeast expression system. The CrHsfAs significantly enhanced yeast survival under thermal and oxidative stress challenges. Our results contribute to a better understanding of the plant Hsf gene family and provide a basis for further study of CrHsf functions in environmental thermotolerance. Our results also provide valuable information on the evolutionary relationships among CrHsf genes and the functional characteristics of the gene family. These findings are beneficial for further research on the natural ecological adaptability of C. rosea to tropical environments.


Subject(s)
Anthozoa , Gene Expression Regulation, Plant , Animals , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Canavalia/metabolism , Plant Proteins/metabolism , Phylogeny , Anthozoa/metabolism , Saccharomyces cerevisiae/metabolism , Islands , Heat-Shock Response/genetics , Stress, Physiological/genetics
14.
Front Plant Sci ; 13: 882884, 2022.
Article in English | MEDLINE | ID: mdl-35909755

ABSTRACT

Salinity adversity has been a major environmental stressor for plant growth and reproduction worldwide. Semi-mangrove Clerodendrum inerme, a naturally salt-tolerant plant, can be studied as a successful example to understand the biological mechanism of saline resistance. Since it is a sophisticated and all-round scale process for plants to react to stress, our greenhouse study interpreted the response of C. inerme to salt challenge in the following aspects: morphology, osmotic protectants, ROS production and scavenging, ion homeostasis, photosynthetic efficiency, and transcriptome reprogramming. The results drew an overview picture to illustrate the tolerant performance of C. inerme from salt acclimatization (till medium NaCl level, 0.3 mol/L) to salinity stress (high NaCl level, 0.5 mol/L). The overall evaluation leads to a conclusion that the main survival strategy of C. inerme is globally reshaping metabolic and ion profiles to adapt to saline adversity. These findings uncover the defense mechanism by which C. inerme moderates its development rate to resist the short- and long-term salt adversity, along with rebalancing the energy allocation between growth and stress tolerance.

15.
Int J Mol Sci ; 23(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35742848

ABSTRACT

Heat shock protein 20 (Hsp20) is a major family of heat shock proteins that mainly function as molecular chaperones and are markedly accumulated in cells when organisms are subjected to environmental stress, particularly heat. Canavalia rosea is an extremophile halophyte with good adaptability to environmental high temperature and is widely distributed in coastal areas or islands in tropical and subtropical regions. In this study, we identified a total of 41 CrHsp20 genes in the C. rosea genome. The gene structures, phylogenetic relationships, chromosome locations, and conserved motifs of each CrHsp20 or encoding protein were analyzed. The promoters of CrHsp20s contained a series of predicted cis-acting elements, which indicates that the expression of different CrHsp20 members is regulated precisely. The expression patterns of the CrHsp20 family were analyzed by RNA sequencing both at the tissue-specific level and under different abiotic stresses, and were further validated by quantitative reverse transcription PCR. The integrated expression profiles of the CrHsp20s indicated that most CrHsp20 genes were greatly upregulated (up to dozens to thousands of times) after 2 h of heat stress. However, some of the heat-upregulated CrHsp20 genes showed completely different expression patterns in response to salt, alkaline, or high osmotic stresses, which indicates their potential specific function in mediating the response of C. rosea to abiotic stresses. In addition, some of CrHsp20s were cloned and functionally characterized for their roles in abiotic stress tolerance in yeast. Taken together, these findings provide a foundation for functionally characterizing Hsp20s to unravel their possible roles in the adaptation of this species to tropical coral reefs. Our results also contribute to the understanding of the complexity of the response of CrHsp20 genes to other abiotic stresses and may help in future studies evaluating the functional characteristics of CrHsp20s for crop genetic improvement.


Subject(s)
Anthozoa , Heat-Shock Proteins , Animals , Anthozoa/genetics , Anthozoa/metabolism , Canavalia/metabolism , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Islands , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
16.
Nat Commun ; 13(1): 643, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110570

ABSTRACT

Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors.


Subject(s)
Buxus/genetics , Genome, Plant , Magnoliopsida/genetics , Buxus/classification , Evolution, Molecular , Genomics , Hybridization, Genetic , Phylogeny , Sequence Analysis, DNA
17.
J Plant Physiol ; 268: 153559, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839100

ABSTRACT

Canavalia rosea (Sw.) DC is a perennial twining herb distributed in the semi-arid and saline-alkali areas of coastal regions and has evolved halotolerance. In this study, we present the first comprehensive survey of the metallothionein (MT) gene family in C. rosea. MT proteins belong to a family of low-molecular-weight polypeptides with a high content of cysteine residues, which have an affinity to bind with heavy metal ions. MTs also play important roles in stress responses as reactive oxygen species (ROS) scavengers. A total of six CrMTs were identified in the C. rosea genome and classified into four subgroups by phylogenetic analysis. An analysis of the cis-acting elements revealed that a series of hormone-, stress-, and development-related cis-acting elements were present in the promoter regions of CrMTs. The expression of CrMTs also showed habitat- and environmental stress-regulated patterns in C. rosea. CrMT overexpression in yeast enhanced tolerance to heavy metals and ROS, as well as high osmotic and alkalinity stress, which is consistent with their predicted roles as metal-chelating proteins and ROS scavengers. Our results indicate that the CrMT genes might contribute to the detoxification of plants to metals and provide marked tolerance against abiotic stress. The expression patterns of CrMTs in C. rosea also indicate that CrMTs play important roles in this species' response to extreme environments on tropical islands and reefs, probably by improving the thermotolerance of C. rosea plants.


Subject(s)
Canavalia , Metallothionein , Metals, Heavy , Adaptation, Physiological , Canavalia/drug effects , Canavalia/genetics , Coral Reefs , Genes, Plant , Metallothionein/genetics , Metals, Heavy/toxicity , Multigene Family , Phylogeny , Reactive Oxygen Species , Tropical Climate
18.
Genes (Basel) ; 12(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34828320

ABSTRACT

Red pitaya (Hylocereus polyrhizus) is a significant functional food that is largely planted in Southeast Asia. Heat stress (HS) induced by high temperatures is likely to restrict the growth and survival of red pitaya. Although pitaya can tolerate temperatures as high as 40 °C, little is known of how it can withstand HS. In this study, the transcriptomic and metabolomic responses of red pitaya seedlings to HS were analyzed. A total of 198 transcripts (122 upregulated and 76 downregulated) were significantly differentially expressed after 24 h and 72 h of exposure to 42 °C compared with a control grown at 28 °C. We also identified 64 differentially accumulated metabolites in pitaya under HS (37 increased and 27 decreased). These differential metabolites, especially amino acids, organic acids, and sugars, are involved in metabolic pathways and the biosynthesis of amino acids. Interaction network analysis of the heat-responsive genes and metabolites suggested that similar pathways and complex response mechanisms are involved in the response of pitaya to HS. Overexpression of one of the upregulated genes (contig10820) in Arabidopsis, which is a homolog of PR-1 and named HuPR-1, significantly increased tolerance to HS. This is the first study showing that HuPR-1 plays a role in the response of pitaya to abiotic stress. These findings provide valuable insights that will aid future studies examining adaptation to HS in pitaya.


Subject(s)
Cactaceae/growth & development , Gene Expression Profiling/methods , Metabolomics/methods , Plant Proteins/genetics , Cactaceae/chemistry , Cactaceae/genetics , Chromatography, Liquid , Gene Expression Regulation, Plant , Hot Temperature , Metabolic Networks and Pathways , RNA-Seq , Seedlings/chemistry , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological , Tandem Mass Spectrometry
19.
Plants (Basel) ; 10(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209283

ABSTRACT

Plant metal tolerance proteins (MTPs) play key roles in heavy metal absorption and homeostasis in plants. By using genome-wide and phylogenetic approaches, the origin and diversification of MTPs from Canavalia rosea (Sw.) DC. was explored. Canavalia rosea (bay bean) is an extremophile halophyte with strong adaptability to seawater and drought and thereby shows specific metal tolerance with a potential phytoremediation ability. However, MTP genes in leguminous plants remain poorly understood. In our study, a total of 12 MTP genes were identified in C. rosea. Multiple sequence alignments showed that all CrMTP proteins possessed the conserved transmembrane domains (TM1 to TM6) and could be classified into three subfamilies: Zn-CDFs (five members), Fe/Zn-CDFs (five members), and Mn-CDFs (two members). Promoter cis-acting element analyses revealed that a distinct number and composition of heavy metal regulated elements and other stress-responsive elements existed in different promoter regions of CrMTPs. Analysis of transcriptome data revealed organ-specific expression of CrMTP genes and the involvement of this family in heavy metal stress responses and adaptation of C. rosea to extreme coral reef environments. Furthermore, the metal-specific activity of several functionally unknown CrMTPs was investigated in yeast. These results will contribute to uncovering the potential functions and molecular mechanisms of heavy metal absorption, translocation, and accumulation in C. rosea plants.

20.
BMC Plant Biol ; 21(1): 333, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256694

ABSTRACT

BACKGROUND: Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown. RESULTS: We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis. CONCLUSIONS: Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.


Subject(s)
Aquaporins/genetics , Canavalia/genetics , Droughts , Soil/chemistry , Adaptation, Physiological , Amino Acid Motifs , Aquaporins/physiology , Biological Evolution , Canavalia/physiology , Chromosome Mapping , Chromosomes, Plant , Ecosystem , Genome, Plant , Multigene Family , Plant Proteins/genetics , Promoter Regions, Genetic , RNA-Seq , Stress, Physiological , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...