Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37174337

ABSTRACT

Docosahexaenoic acid (DHA) is highly enriched in the brain, and is essential for normal brain development and function. However, evidence suggests that currently used supplements, such as fish oil, do not significantly increase brain DHA levels. Therefore, this study aimed to investigate whether combined fish oil and choline supplementation could affect the type and enrich the content of DHA in the brain. The results revealed that the combined intake of fish oil and choline upregulated the expression of key transporters and receptors, including MFSD2A, FATP1, and FABP5, which increased the uptake of DHA in the brain. Additionally, this supplementation improved the synthesis and release of acetylcholine in the brain, which, in turn, enhanced the learning and memory abilities of mice. These findings suggest that the combined intake of fish oil and choline improves the bioavailability of DHA in the brain.

2.
Food Funct ; 11(7): 6139-6147, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32573635

ABSTRACT

Sea cucumber is a valuable marine food that has antioxidant, anti-diabetic, and anti-obesity functionalities. Sea cucumber ovum (SCO) may contain functional components, however, it is considered to be a waste product during industrial processing. In order to make good use of SCO, this work investigated the effects of freeze-dried SCO powder on NAFLD, using a rat model, through iBT labeling proteomics techniques, tracking changes in the hepatic protein profiles of rats whose diets were supplemented with SCO powder. Male rats were fed with standard food, a high fat diet (HFD), or a HFD supplemented with 150 mg per kg BW or 450 mg per kg BW SCO powder for 6 weeks. Compared with the HFD, low-dose SCO supplementation in the diet could significantly reduce body weight gain and liver weight. Furthermore, in total, 5922 proteins were identified, and 767 proteins were found to be significantly different proteins (p < 0.05) among all four groups. Most of the significantly different proteins were related to apoptosis and lipid metabolism. Fadd, Dci, and Aif1 have been identified as key proteins in the pathways related to apoptosis, lipid metabolism, and inflammation. The results in this study provide an overview of the SCO-induced changes in the liver proteome of NAFLD, which may help us to understand the molecular mechanism behind the effects of SCO on the alleviation of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Proteomics/methods , Sea Cucumbers/chemistry , Animals , Disease Models, Animal , Lipids/blood , Liver/chemistry , Liver/pathology , Male , Ovum/chemistry , Proteins/analysis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...