Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 577
Filter
1.
Plant Biotechnol J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856080

ABSTRACT

Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.

2.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869213

ABSTRACT

Liquiritigenin is a natural medicine. However, its inhibitory effect and its potential mechanism on bladder cancer (BCa) remain to be explored. It was found that it could be visualized that the transplanted tumours in the low-dose liquiritigenin -treated group and the high-dose liquiritigenin -treated group were smaller than those in the model group. Liquiritigenin treatment led to alterations in Lachnoclostridium, Escherichia-Shigella, Alistipes and Akkermansia. Non-targeted metabolomics analysis showed that a total of multiple differential metabolites were identified between the model group and the high-dose liquiritigenin-treated group. This provides a new direction and rationale for the antitumour effects of liquiritigenin.

3.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764726

ABSTRACT

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

4.
Front Pharmacol ; 15: 1348076, 2024.
Article in English | MEDLINE | ID: mdl-38572428

ABSTRACT

Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.

5.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1028-1043, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621910

ABSTRACT

This study aims to decipher the mechanism of Buzhong Yiqi Decoction(BZYQD) in the treatment of spleen deficiency syndrome via gut microbiota. The mouse models of spleen deficiency syndrome were established by fecal microbiota transplantation(FMT, from patients with spleen deficiency syndrome) and administration of Sennae Folium(SF, 10 g·kg~(-1)), respectively, and treated with BZYQD for 5 d. The pseudosterile mice(administrated with large doses of antibiotics) and the mice transplanted with fecal bacteria from healthy human were taken as the controls. The levels of IgA, interleukin(IL)-2, IL-1ß, interferon(IFN)-γ, tumor necrosis factor-alpha(TNF-α), and 5-hydroxytryptamine(5-HT) in the intestinal tissue of two models were measured by enzyme-linked immunosorbent assay, and the CD8~+/CD3~+ ratio was determined by flow cytometry. The composition and changes of the gut microbiota were determined by 16S rRNA high-throughput sequencing and qPCR. Furthermore, the correlation analysis was performed to study the mediating role of gut microbiota in the treatment. The results showed that BZYQD elevated the IgA level, lowered the IL-1ß, TNF-α, and 5-HT levels, and decreased the CD8~+/CD3~+ ratio in the intestinal tissue of the two models. Moreover, BZYQD had two-way regulatory effects on the levels of IL-2 and IFN-γ. BZYQD inhibited the overgrowth and reduced the richness of gut microbiota in the SF model, and improved the gut microbiota structure in the two models. Algoriphagus, Mycobacterium, and CL500_29_marine_group were the common differential genera in the two models compared with the control. Acinetobacter, Parabacteroides, and Ruminococcus were the differential genera unique to the FMT model, and Sphingorhabdus, Lactobacillus, and Anaeroplasma were the unique differential genera in the SF model. BZYQD was capable of regulating all these genera. The qPCR results showed that BZYQD increased the relative abundance of Akkermansia muciniphila and decreased that of Bacteroides uniformis in the two models. The correlation analysis revealed that the levels of above intestinal cytokines were significantly correlated with characteristic gut microorganisms in different mo-dels. The IL-1ß level had a significantly positive correlation with Acinetobacter and CL500_29_marine_group in the two models, while the different levels of IL-2 and IFN-γ in the two models may be related to its different gut microbiota structures. In conclusion, BZYQD could regulate the disordered gut microbiota structure in different animal models of spleen deficiency syndrome to improve the intestinal immune status, which might be one of the mechanisms of BZYQD in treating spleen deficiency syndrome.


Subject(s)
Gastrointestinal Microbiome , Spleen , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , RNA, Ribosomal, 16S/genetics , Interleukin-2/pharmacology , Serotonin , Immunoglobulin A/pharmacology
6.
World J Clin Cases ; 12(7): 1320-1325, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38524521

ABSTRACT

BACKGROUND: Developmental dysplasia of the hip (DDH) is a common osteoarticular deformity in pediatric orthopedics. A patient with bilateral DDH was diagnosed and treated using our improved technique "(powerful overturning acetabuloplasty)" combined with femoral rotational shortening osteotomy. CASE SUMMARY: A 4-year-old girl who was diagnosed with bilateral DDH could not stand normally, and sought surgical treatment to solve the problem of double hip extension and standing. As this child had high dislocation of the hip joint and the acetabular index was high, we changed the traditional acetabuloplasty to "powerful turnover acetabuloplasty" combined with femoral rotation shortening osteotomy. During the short-term postoperative follow-up (1, 3, 6, 9, 12, and 15 months), the child had no discomfort in her lower limbs. After the braces and internal fixation plates were removed, formal rehabilitation training was actively carried out. CONCLUSION: Our "powerful overturning acetabuloplasty" combined with femoral rotational shortening osteotomy is feasible in the treatment of DDH in children. This technology may be widely used in the clinic.

7.
Phytomedicine ; 128: 155517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518650

ABSTRACT

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Subject(s)
Berberine , Gastrointestinal Microbiome , Phenylacetates , Thrombosis , Animals , Gastrointestinal Microbiome/drug effects , Berberine/pharmacology , Berberine/analogs & derivatives , Thrombosis/prevention & control , Male , Mice , Phenylacetates/pharmacology , Carrageenan , Coptis/chemistry , Disease Models, Animal , Mice, Inbred C57BL , Fecal Microbiota Transplantation , RNA, Ribosomal, 16S
8.
Angew Chem Int Ed Engl ; 63(20): e202402612, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38410071

ABSTRACT

The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.

9.
Aging (Albany NY) ; 16(2): 1374-1389, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38295303

ABSTRACT

A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.


Subject(s)
Alzheimer Disease , Physical Conditioning, Animal , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Disease Models, Animal , Kupffer Cells/metabolism , Lipopolysaccharides , Liver/metabolism , Mice, Transgenic , Oxidation-Reduction , Physical Conditioning, Animal/physiology
10.
Plant Cell Environ ; 47(4): 1128-1140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38093692

ABSTRACT

High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.


Subject(s)
Musa , Temperature , Musa/genetics , Musa/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant
11.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37816143

ABSTRACT

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Subject(s)
Arabidopsis , Musa , Cellulose/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Musa/genetics , Musa/metabolism , Fruit/genetics , Fruit/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics
12.
CNS Neurosci Ther ; 30(4): e14547, 2024 04.
Article in English | MEDLINE | ID: mdl-38105496

ABSTRACT

AIMS: Subsyndromal depression (SSD) is common in mild cognitive impairment (MCI). However, the neural mechanisms underlying MCI with SSD (MCID) are unclear. The default mode network (DMN) is associated with cognitive processes and depressive symptoms. Therefore, we aimed to explore the topological organization of the DMN in patients with MCID. METHODS: Forty-two MCID patients, 34 MCI patients without SSD (MCIND), and 36 matched healthy controls (HCs) were enrolled. The resting-state functional connectivity of the DMN of the participants was analyzed using a graph theoretical approach. Correlation analyses of network topological metrics, depressive symptoms, and cognitive function were conducted. Moreover, support vector machine (SVM) models were constructed based on topological metrics to distinguish MCID from MCIND. Finally, we used 10 repeats of 5-fold cross-validation for performance verification. RESULTS: We found that the global efficiency and nodal efficiency of the left anterior medial prefrontal cortex (aMPFC) of the MCID group were significantly lower than the MCIND group. Moreover, small-worldness and global efficiency were negatively correlated with depressive symptoms in MCID, and the nodal efficiency of the left lateral temporal cortex and left aMPFC was positively correlated with cognitive function in MCID. In cross-validation, the SVM model had an accuracy of 0.83 [95% CI 0.79-0.87], a sensitivity of 0.88 [95% CI 0.86-0.90], a specificity of 0.75 [95% CI 0.72-0.78] and an area under the curve of 0.88 [95% CI 0.85-0.91]. CONCLUSIONS: The coexistence of MCI and SSD was associated with the greatest disrupted topological organization of the DMN. The network topological metrics could identify MCID and serve as biomarkers of different clinical phenotypic presentations of MCI.


Subject(s)
Brain , Cognitive Dysfunction , Humans , Brain/diagnostic imaging , Brain Mapping , Default Mode Network , Depression/diagnostic imaging , Magnetic Resonance Imaging
13.
J Cancer ; 14(18): 3567, 2023.
Article in English | MEDLINE | ID: mdl-38152251

ABSTRACT

[This corrects the article DOI: 10.7150/jca.21224.].

14.
Acta Ophthalmol ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009430

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of intravitreal injections of 0.5 mg conbercept in patients with choroidal neovascularization secondary to pathological myopia (pmCNV). METHODS: The 177 pmCNV patients were randomly assigned in a 3:1 ratio to receive conbercept or sham injection, respectively. The conbercept group receive conbercept intravitreal injections administered on a pro re nata (PRN) basis after 3 monthly loading doses. The sham group received three consecutive monthly sham injections and then one conbercept injection followed by PRN conbercept intravitreal injections. RESULTS: At month 3, the mean BCVA for the two groups were improved by 12.0 letters (conbercept group, from 54.05 letters to 66.05 letters) and 0.6 letters (sham group, from 49.77 letters to 50.33 letters), respectively (p < 0.001). The mean central retinal thickness (CRT) at month 3 in the two groups decreased 62.0 µm (conbercept group, from 348.90 µm to 286.18 µm) and 4.4 µm (sham group, from 347.86 µm to 343.47 µm) (p < 0.001). At month 9, the mean BCVA improved by 13.3 letters in the conbercept group and 11.3 letters in the sham group. The mean CRT decreased 73.6 µm in the conbercept group and 55.9 µm in the sham group (p < 0.001). The most common ocular adverse events were associated with intravitreal injections, such as conjunctival haemorrhage and increased intraocular pressure. CONCLUSION: Intravitreal injections of 0.5 mg conbercept provided improvement in visual and anatomical outcomes in pmCNV patients with low rates of ocular and nonocular safety events.

15.
iScience ; 26(12): 108359, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034350

ABSTRACT

To explore the safety and efficacy of thoracic endovascular aortic repair (TEVAR) in the treatment of patients with type B aortic dissection, and to evaluate the risk factors for long-term mortality. Our study retrospectively evaluated 729 patients with type B aortic dissection, who were divided into the thoracic endovascular aortic repair group and the optimal medical treatment group according to their treatment. In-hospital mortality, death within 30 days, and aortic-related mortality were lower in the thoracic endovascular aortic repair group than in the optimal medical treatment group (p < 0.05). The cumulative overall survival rates for the thoracic endovascular aortic repair group at 1 year, 5 years, and 10 years were 92.5%, 84.1%, and 73.5%, respectively. The Cox analysis found that TEVAR was beneficial in reducing mortality and that a vertical length of the dissection exceeding 150 mm was a risk factor for mortality.

16.
Hortic Res ; 10(10): uhad177, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37868621

ABSTRACT

The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.

17.
Int J Biol Macromol ; 253(Pt 6): 127144, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802454

ABSTRACT

Sucrose, a predominant sweetener in banana (Musa acuminata) fruit, determines sweetness and consumer preferences. Although sucrose phosphate synthase (SPS) is known to catalyze starch conversion into sucrose in banana fruit during the ripening process, the SPS regulatory mechanism during ripening still demands investigation. Hence, this study discovered that the MaSPS1 expression was promoted during ethylene-mediated ripening in banana fruit. MaNAC19, recognized as the MaSPS1 putative binding protein using yeast one-hybrid screening, directly binds to the MaSPS1 promoter, thereby transcriptionally activating its expression, which was verified by transient overexpression experiments, where the sucrose synthesis was accelerated through MaNAC19-induced transcription of MaSPS1. Interestingly, MaXB3, an ethylene-inhibited E3 ligase, was found to ubiquitinate MaNAC19, making it prone to proteasomal degradation, inhibiting transactivation of MaNAC19 to MaSPS1, thereby attenuating MaNAC19-promoted sucrose accumulation. This study's findings collectively illustrated the mechanistic basis of a MaXB3-MaNAC19-MaSPS1 regulatory module controlling sucrose synthesis during banana fruit ripening. These outcomes have broadened our understanding of the regulation mechanisms that contributed to sucrose metabolism occurring in transcriptional and post-transcriptional stages, which might help develop molecular approaches for controlling ripening and improving fruit quality.


Subject(s)
Fruit , Musa , Fruit/metabolism , Musa/genetics , Musa/metabolism , Promoter Regions, Genetic/genetics , Sucrose/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Food Res Int ; 173(Pt 2): 113415, 2023 11.
Article in English | MEDLINE | ID: mdl-37803753

ABSTRACT

Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.


Subject(s)
Fruit , Musa , Fruit/chemistry , Membrane Lipids/analysis , Membrane Lipids/metabolism , Musa/metabolism , Food Storage/methods , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Lipase/metabolism , Polyesters/analysis
19.
Life Sci ; 331: 122042, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634815

ABSTRACT

AIMS: Memory impairment is a major clinical manifestation in Alzheimer's disease (AD) patients, while regular exercise may prevent and delay degenerative changes in memory functions, and our aim is to explore the influence and molecular mechanisms of aerobic exercise on the early stages of Alzheimer's disease. MAIN METHODS: 3-month-old male APP/PS1 transgenic AD mice and C57BL/6J wild-type mice were randomly divided into four groups: wild-type and APP/PS1 mice with sedentary (WT-SED, AD-SED), and running (WT-RUN, AD-RUN) for 12-weeks. The spatial learning and memory function, RNA-sequencing, spine density, synaptic associated protein, mRNA and protein expression involved in G protein-coupled receptor 81 (GPR81) signaling pathway, and complement factors in brain were measured. KEY FINDINGS: Aerobic exercise improved spatial learning and memory in APP/PS1 mice, potentially attributed to increased dendritic spine density. Subsequently, potential underlying mechanisms were identified through RNA sequencing: regular aerobic exercise could activate the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cAMP/PKA signaling pathway and upregulate synaptic function-related proteins to promote synaptic growth, possibly by modulating GPR81. Notably, regular aerobic exercise inhibited microglial activation, reversed the microglial phenotype, reduced the production of initiation factor C1q and central factor C3 in the complement cascade in the brain, prevented the colocalization of microglia and PSD-95, and thus prevented synaptic loss. SIGNIFICANCE: Physical exercise could play a critical role in improving cognitive function in AD by promoting synaptic growth and preventing synaptic loss, which may be related to the regulation of the GPR81/cAMP/PKA signaling pathway and inhibition of complement-mediated microglial phagocytosis of synapses.


Subject(s)
Alzheimer Disease , Humans , Mice , Male , Animals , Infant , Alzheimer Disease/metabolism , Microglia/metabolism , Amyloid beta-Protein Precursor/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Complement System Proteins , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Homeostasis , Disease Models, Animal , Hippocampus/metabolism , Presenilin-1
SELECTION OF CITATIONS
SEARCH DETAIL
...