Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1423367, 2024.
Article in English | MEDLINE | ID: mdl-38933020

ABSTRACT

Deltacoronavirus, widely distributed among pigs and wild birds, pose a significant risk of cross-species transmission, including potential human epidemics. Metagenomic analysis of bird samples from Qinghai Lake, China in 2021 reported the presence of Deltacoronavirus. A specific gene fragment of Deltacoronavirus was detected in fecal samples from wild birds at a positive rate of 5.94% (6/101). Next-generation sequencing (NGS) identified a novel Deltacoronavirus strain, which was closely related to isolates from the United Arab Emirates (2018), China (2022), and Poland (2023). Subsequently the strain was named A/black-headed gull/Qinghai/2021(BHG-QH-2021) upon confirmation of the Cytochrome b gene of black-headed gull in the sample. All available genome sequences of avian Deltacoronavirus, including the newly identified BHG-QH-2021 and 5 representative strains of porcine Deltacoronavirus (PDCoV), were classified according to ICTV criteria. In contrast to Coronavirus HKU15, which infects both mammals and birds and shows the possibility of cross-species transmission from bird to mammal host, our analysis revealed that BHG-QH-2021 is classified as Putative species 4. Putative species 4 has been reported to infect 5 species of birds but not mammals, suggesting that cross-species transmission of Putative species 4 is more prevalent among birds. Recombination analysis traced BHG-QH-2021 origin to dut148cor1 and MW01_1o strains, with MW01_1o contributing the S gene. Surprisingly, SwissModle prediction showed that the optimal template for receptor-binding domain (RBD) of BHG-QH-2021 is derived from the human coronavirus 229E, a member of the Alphacoronavirus, rather than the anticipated RBD structure of PDCoV of Deltacoronavirus. Further molecular docking analysis revealed that substituting the loop 1-2 segments of HCoV-229E significantly enhanced the binding capability of BHG-QH-2021 with human Aminopeptidase N (hAPN), surpassing its native receptor-binding domain (RBD). Most importantly, this finding was further confirmed by co-immunoprecipitation experiment that loop 1-2 segments of HCoV-229E enable BHG-QH-2021 RBD binding to hAPN, indicating that the loop 1-2 segment of the RBD in Putative species 4 is a probable key determinant for the virus ability to spill over into humans. Our results summarize the phylogenetic relationships among known Deltacoronavirus, reveal an independent putative avian Deltacoronavirus species with inter-continental and inter-species transmission potential, and underscore the importance of continuous surveillance of wildlife Deltacoronavirus.

2.
Animals (Basel) ; 14(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38338119

ABSTRACT

The northwestern region of China, known as the Qinghai-Tibet Plateau Area (QTPA), is characterized by unique climate conditions that support the breeding of various highly-adapted livestock species. Tick vectors play a significant role in transmitting Babesia and Theileria species, posing serious risks to animal health as well as the economy of animal husbandry in QTPA. A total of 366 blood samples were collected from Tibetan sheep (n = 51), goats (n = 67), yaks (n = 43), cattle (n = 49), Bactrian camels (n = 50), horses (n = 65), and donkeys (n = 40). These samples were examined using conventional and nested PCR techniques to detect Theileria and Babesia species. The overall infection rates were 0.3% (1/366) for Babesia spp. and 38.2% (140/366) for Theileria spp. Notably, neither Babesia nor Theileria species were detected in donkeys and yaks. The infection rates of Babesia and Theileria species among animals in different prefectures were significantly different (p < 0.05). Furthermore, Babesia bovis, B. bigemina, B. caballi, and B. ovis were not detected in the current study. To our knowledge, this is the first documented detection of Theileria luwenshuni infection in Bactrian camels and goats, as well as T. sinesis in cattle and T. equi in horses on the Qinghai plateau. These novel findings shed light on the distribution of Babesia and Theileria species among livestock species in QTPA.

3.
Pathogens ; 13(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276159

ABSTRACT

The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.

4.
Int J Parasitol Parasites Wildl ; 21: 110-115, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575666

ABSTRACT

Enterocytozoon bieneusi is considered to be a microsporidial species of humans and animals in the worldwide. Limited data have been reported on the prevalence and genotypes of E. bieneusi in livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area, which shares water sources, grasslands, and harsh climate with high altitudes. In this study, fecal samples from 110 Tibetan sheep, 128 yaks, 227 wild birds, 96 blue sheep (Pseudois nayaur) and 268 Przewalski's gazelle (Procapra przewalskii) around Qinghai Lake were collected, and then tested for E. bieneusi by PCR and sequencing analysis based on the ribosomal internal transcribed spacer. Among them, ten (9.09%) samples from Tibetan sheep, five (3.91%) from yaks, five (2.20%) from wild birds, one (1.04%) from wild blue sheep and two (0.75%) from Przewalski's gazelle were positive for E. bieneusi. Among sheep, there were nine E. bieneusi genotypes, including two known genotypes (BEB6 and J), and seven novel genotypes (named CHS18-CHS24). From yaks, four genotypes were identified, including two known ones (BEB4 and J) and two novel genotypes (named CHN15 and CHN16). While in wild animals, eight genotypes were found, including five different genotypes from wild bids, with three known genotypes (EbpC, J and NCF2), two novel genotypes (named CHWB1 and CHS24), and two genotypes from Przewalski's gazelle, with one known genotype J and one novel genotype CHWPG1, and one novel genotype CHWBS1 from blue sheep. According to the phylogenetic analysis, five isolates belonged to group 1, and the others were clustered into group 2. This study provides unique data on the epidemiological reports and potential risk factors for E. bieneusi in both domesticated livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area; it is important to better understand the molecular epidemiology and zoonotic potential of E. bieneusi in the Qinghai-Tibetan Plateau area.

5.
Exp Parasitol ; 247: 108494, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36849051

ABSTRACT

Echinococcosis is a serious zoonotic life-threatening parasitic disease caused by metacestodes of Echinococcus spp., and appropriate sensitive diagnosis and genotyping techniques are required to detect infections and study the genetic characterization of Echinococcus spp. isolates. In this study, a single-tube nested PCR (STNPCR) method was developed and evaluated for the detection of Echinococcus spp. DNA based on the COI gene. STNPCR was 100 times more sensitive than conventional PCR and showed the same sensitivity to common nested PCR (NPCR); but with a lower risk of cross-contamination. The limit of detection of the developed STNPCR method was estimated to be 10 copies/µL of the recombinant standard plasmids of Echinococcus spp. COI gene. In clinical application, 8 cyst tissue samples and 12 calcification tissue samples were analysed by conventional PCR with outer and inner primers and resulted in 100.00% (8/8) and 8.33% (1/12), 100.00% (8/8) and 16.67% (2/12) positive reactions, respectively, while STNPCR and NPCR were all able to identify the presence of genomic DNA in 100.00% (8/8) and 83.33% (10/12) of the same samples. Due to its high sensitivity combined with the potential for the elimination of cross-contamination, the STNPCR method was suitable for epidemiological investigations and characteristic genetic studies of Echinococcus spp. tissue samples. The STNPCR method can effectively amplify low concentrations of genomic DNA from calcification samples and cyst residues infected with Echinococcus spp. Subsequently, the sequences of positive PCR products were obtained, which were useful for haplotype analysis, genetic diversity, and evolution studies of Echinococcus spp., and understanding of Echinococcus spp. dissemination and transmission among the hosts.


Subject(s)
Echinococcosis , Echinococcus , Animals , Humans , Echinococcus/genetics , Polymerase Chain Reaction/methods , Echinococcosis/diagnosis , Plasmids
6.
Pathogens ; 11(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364990

ABSTRACT

Dogs are popular companions in our daily lives for company, hunting, protection or shepherding, but they also serve as reservoirs for zoonotic parasites. We analysed faecal samples from urban and rural environments in Qinghai Province on the Qinghai-Tibet Plateau of China to determine the prevalence of intestinal parasites. A total of 682 faecal samples were collected from four urban and two rural environments from October 2019 to December 2020. The samples were analysed for common intestinal parasites using a species-specific PCR approach. The total number of samples with parasites was 40 (5.87%): 23 (3.37%) were positive for helminths, and 17 (2.49%) were positive for protozoa. The following parasites were identified, and their respective prevalence rates were calculated: Cryptosporidium canis (1.32%), Giardia duodenalis (1.17%, assemblages D (n = 6) and C (n = 2)), Taenia hydatigena (1.03%), Taenia multiceps (0.59%), Toxocara canis (0.59%), Echinococcus shiquicus (0.29%), Dipylidium caninum (0.29%), Taenia pisiformis (0.15%), Mesocestoides lineatus (0.15%), Trichuris vulpis (0.15%), and Ancylostoma spp. (0.15%). The overall prevalence was significantly higher in dog faecal samples from rural environments than in those from urban environments (16.19% vs. 3.99%). E. shiquicus, T. pisiformis, M. lineatus, T. vulpis, and Ancylostoma spp. were only found in dog faecal samples from rural environments. The results of the present study indicate that intestinal parasite-positive dogs are important sources of environmental contamination, suggesting a significant zoonotic infection risk in humans and other animals. This has implications for the ongoing control of intestinal parasite infections in dogs in Qinghai Province, China.

7.
J Parasitol ; 108(1): 79-87, 2022 01 01.
Article in English | MEDLINE | ID: mdl-35171246

ABSTRACT

Echinococcosis is a zoonotic disease with great significance to public health, and appropriate detection and control strategies should be adopted to mitigate its impact. Most cases of echinococcosis are believed to be transmitted by the consumption of food and/or water contaminated with canid stool containing Echinococcus spp. eggs. Studies assessing Echinococcus multilocularis, Echinococcus granulosus sensu stricto, and Echinococcus shiquicus coinfection from contaminated water-derived, soil-derived, and food-borne samples are scarce, which may be due to the lack of optimized laboratory detection methods. The present study aimed to develop and evaluate a novel triplex TaqMan-minor groove binder probe for real-time polymerase chain reaction (rtPCR) to simultaneously detect the 3 Echinococcus spp. mentioned above from canid fecal samples in the Qinghai-Tibetan Plateau area (QTPA). The efficiency and linearity of each signal channel in the triplex rtPCR assay were within acceptable limits for the range of concentrations tested. Furthermore, the method was shown to have good repeatability (standard deviation ≤0.32 cycle threshold), and the limit of detection was estimated to be 10 copies plasmid/µl reaction. In summary, the evaluation of the present method shows that the newly developed triplex rtPCR assay is a highly specific, precise, consistent, and stable method that could be used in epidemiological investigations of echinococcosis.


Subject(s)
Canidae/parasitology , Dog Diseases/parasitology , Echinococcosis/veterinary , Echinococcus/isolation & purification , Feces/parasitology , Multiplex Polymerase Chain Reaction/veterinary , Animals , Computational Biology/standards , DNA, Helminth/isolation & purification , Dogs , Echinococcosis/parasitology , Echinococcus/classification , Echinococcus/genetics , Foxes/parasitology , Limit of Detection , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity , Soil/parasitology
8.
Korean J Parasitol ; 59(3): 311-317, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34218604

ABSTRACT

The present study reports a rare case of Taenia saginata infection, which was initially diagnosed as acute cholecystitis in a Tibetan patient at the Qinghai-Tibetan Plateau pastoral area, China. A 45-year-old female was initially diagnosed with acute cholecystitis at a hospital in China. She had a slight fever, weight loss and constipation and complained of pain in the upper abdomen and left back areas. Increase of monocyte, eosinophil and basophil levels were shown. Taenia sp. eggs were detected in a fecal examination. An adult tapeworm approximately 146 cm in length, whitish-yellow color, was collected from the patient after treatment with traditional Chinese medicine. The adult tapeworm had a scolex and proglottids with genital pores. The scolex was rectangular shape with 4 suckers and rostellum without hooklet. The cox1 gene sequence shared 99.5-99.8% homology with that of T. saginata from other regions in China. The patient was diagnosed finally infected with T. saginata by morphological and molecular charateristics.


Subject(s)
Cholecystitis, Acute , Taenia saginata , Taenia , Taeniasis , Adult , Animals , China , Diagnostic Errors , Female , Humans , Middle Aged , Taenia/genetics , Taenia saginata/genetics , Taeniasis/diagnosis , Tibet
9.
Parasitol Res ; 120(2): 615-628, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33415392

ABSTRACT

Cryptosporidium and Giardia are important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal diseases. There are few reports of the epidemiological prevalence and molecular characterization of Cryptosporidium and Giardia in wild birds around Qinghai Lake and in the surrounding areas on the Qinghai-Tibetan Plateau, Northwest China. Therefore, the aim of this study was to determine the Cryptosporidium spp. and Giardia duodenalis genotypes and their epidemiological prevalence in wild birds by PCR amplification. To our knowledge, this is the first report of a variety of Cryptosporidium spp. and G. duodenalis infections in wild birds from that area, with overall prevalence rates of 8.98% (61/679) and 3.39% (23/679), respectively. Furthermore, PCR sequencing confirmed the presence of Cryptosporidium baileyi (n = 3), Cryptosporidium parvum (n = 58), and G. duodenalis assemblage B (n = 19) and E (n = 4) in wild birds from the areas around Qinghai Lake. The results of the present study demonstrated the wide distribution of Cryptosporidium and Giardia among wild birds, which has potential public health significance. Moreover, the study findings also provided useful molecular epidemiological data for monitoring and investigating the two parasitic protozoa in wild animals and surrounding environments.


Subject(s)
Bird Diseases/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/isolation & purification , Diarrhea/veterinary , Giardia lamblia/isolation & purification , Giardiasis/veterinary , Animals , Animals, Wild , Bird Diseases/parasitology , Birds , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Diarrhea/epidemiology , Diarrhea/parasitology , Genotype , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/parasitology , Lakes , Molecular Epidemiology , Polymerase Chain Reaction/veterinary , Prevalence , Tibet/epidemiology
10.
Ticks Tick Borne Dis ; 11(5): 101466, 2020 09.
Article in English | MEDLINE | ID: mdl-32723655

ABSTRACT

Due to the specific plateau climate, a variety of unique animals live in the Qinghai-Tibetan Plateau Area (QTPA) including yaks (Bos grunniens), Tibetan sheep (Ovis aries) and Bactrian camels (Camelus bactrianus). However, information on tick-borne diseases (TBDs) in the QTPA and on the molecular characteristics of tick-borne pathogens (TBPs) in the area is limited. Therefore, the aim of this study was to investigate Anaplasma spp., Babesia spp., Theileria spp., Borrelia burgdorferi sensu lato and Rickettsia spp. infecting yaks, Tibetan sheep and camels in this area. A total of 276 animals were screened. Overall, 84.5% (164/194) of yaks, 58% (23/40) of Tibetan sheep, and 38% (16/42) of camels tested positive for at least one pathogen. Theileria spp., Anaplasma ovis and spotted fever group (SFG) Rickettsia spp. were detected as TBPs in the current study with overall infection rates of 10.9% (30/276), 8.3% (23/276) and 62.9% (171/276), respectively. Further study revealed that 1.5% (3/194) of the yaks were infected with Theileria sp. OT3, 1.5% (3/194) with T. luwenshuni, 6.2% (12/194) with T. uilenbergi, 1.1% (2/194) with T. ovis and 82% (159/194) with SFG Rickettsia spp. It was also shown that 58% (23/40) of the Tibetan sheep were infected with A. ovis and 15% (6/40) with T. ovis. Among the camels, 10% (4/42) were infected with T. equi, while 29% (12/42) were positive for Rickettsia spp. Sequence analysis revealed that the Rickettsia spp. infecting yaks and camels were Rickettsia raoultii and Rickettsia slovaca. To the best of our knowledge, this study reports the first detection and characterization of these pathogens in yaks, Tibetan sheep and camels in the country, except for T. luwenshuni infections in yaks.


Subject(s)
Anaplasmosis/epidemiology , Babesiosis/epidemiology , Camelus , Lyme Disease/veterinary , Rickettsia Infections/veterinary , Theileriasis/epidemiology , Tick-Borne Diseases/epidemiology , Anaplasma/isolation & purification , Anaplasmosis/microbiology , Animals , Babesia/isolation & purification , Babesiosis/parasitology , Borrelia burgdorferi Group/isolation & purification , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Lyme Disease/epidemiology , Lyme Disease/microbiology , Prevalence , Rickettsia/isolation & purification , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep, Domestic , Theileria/isolation & purification , Theileriasis/parasitology , Tibet/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology
11.
Parasitol Res ; 119(6): 1847-1855, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32350588

ABSTRACT

Cryptosporidium and Giardia are well-known parasitic protozoans responsible for waterborne and foodborne diarrhoeal diseases. However, data are not available on market vegetables contaminated with Cryptosporidium and Giardia in China. In the present study, 642 different vegetable samples were collected from Xining City street vendors in the Qinghai Province to study the Cryptosporidium and Giardia contamination rates via PCR and sequence analyses. Cryptosporidium spp. and Giardia duodenalis were detected in 16 (2.5%) and 73 (11.4%) samples, respectively. Two species of Cryptosporidium, C. parvum (n = 11) and C. andersoni (n = 5), were identified. G. duodenalis assemblage B was identified in almost all positive samples (n = 72), except one sample that contained G. duodenalis assemblage E. We report on the rate of Cryptosporidium and Giardia contamination in vegetables for the first time from the Qinghai Tibetan Plateau Area (QTPA) in China.


Subject(s)
Cryptosporidium/isolation & purification , Giardia/isolation & purification , Oocysts/isolation & purification , Vegetables/parasitology , Animals , China , Cryptosporidium/genetics , Food Contamination , Giardia/genetics , Giardia lamblia/genetics , Polymerase Chain Reaction , Tibet
12.
Pathogens ; 9(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231020

ABSTRACT

The Qinghai-Tibetan Plateau Area (QTPA) is a plateau with the highest average altitude, located in Northwestern China. There is a risk for interspecies disease transmission, such as spotted fever rickettsioses. However, information on the molecular characteristics of the spotted fever group (SFG) Rickettsia spp. in the area is limited. This study performed screenings, and detected the DNA of human pathogen, SFG Rickettsia spp., with 11.3% (25/222) infection rates in yaks (Bos grunniens). BLASTn analysis revealed that the Rickettsia sequences obtained shared 94.3-100% identity with isolates of Rickettsia spp. from ticks in China. One Rickettsia sequence (MN536161) had 100% nucleotide identity to two R. raoultii isolates from Chinese Homo sapiens, and one isolate from Qinghai Dermacentor silvarum. Meanwhile, another Rickettsia sequence (MN536157) shared 99.1-99.5% identity to one isolate from Dermacentor spp. in China. Furthermore, the phylogenetic analysis of SFG Rickettsia spp. ompA gene revealed that these two sequences obtained from yaks in the present study grouped with the R. slovaca and R. raoultii clades with isolates identified from Dermacentor spp. and Homo sapiens. Our findings showed the first evidence of human pathogen DNA, SFG Rickettsia spp., from animals, in the QTPA.

13.
Parasitol Res ; 118(12): 3571, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31728718

ABSTRACT

The authors of this article would like to state that C. environmental is not a species, but rather a group of un-identified Cryptosporidium isolates from the environment. It is referred to in the literature as Cryptosporidium environmental sequence and not as a species.

14.
Korean J Parasitol ; 57(4): 423-427, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31533410

ABSTRACT

Coenurosis is an important zoonotic helminthic disease caused by the larval stage of the tapeworm Taenia multiceps. This parasite typically infects the brain of the intermediate hosts, including sheep, goat, cattle and even humans. We report a case of T. multiceps infection in a yak confirmed by clinical symptoms, morphological characteristics, and molecular and phylogenetic analyses. The coenurus was thin-walled, whitish, and spherical in shape with a diameter of 10 cm. The parasite species was identified as T. multiceps by PCR amplification and sequencing of the 18S rRNA, cox1 and nad1 genes. Three gene sequences all showed high homology (all above 97%) with the reference sequences from different hosts. Moreover, phylogenetic reconstructions with the 3 published Taenia gene sequences confirmed that the Qinghai yak isolate was closely related to T. multiceps. Although there are advanced diagnosis and treatment methods for coenurosis, early infection is difficult to diagnose. Importantly, the findings of yak infection case should not be ignored due to its zoonotic potential.


Subject(s)
Cattle Diseases/parasitology , Neurocysticercosis/veterinary , Taenia/genetics , Animals , Cattle , Cyclooxygenase 1/genetics , Electrophoresis, Agar Gel/veterinary , Male , NAD/genetics , Neurocysticercosis/parasitology , Phylogeny , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 18S/genetics , Sequence Alignment/veterinary , Sequence Analysis, DNA/veterinary , Taenia/classification , Taenia/isolation & purification , Tibet
15.
Parasitology ; 146(10): 1305-1312, 2019 09.
Article in English | MEDLINE | ID: mdl-31148526

ABSTRACT

This study examined Echinococcus spp. genotypes and genetic variants isolated from humans as well as domestic and wild animals from the Qinghai-Tibetan Plateau Area using the cox1 gene. All samples except the pika isolates were identified as the Echinococcus granulosus sensu stricto. Sixteen different haplotypes with considerable intraspecific variation were detected and characterized in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features, and the neutrality indexes computed via Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s., indicating deviations from neutrality; the Fst values were low among the populations, implying that the populations were not genetically differentiated. The pika isolates were identified as E. multilocularis and E. shiquicus. Only one haplotype was recognized in the pika isolates. E. granulosus s. s. was the predominant species found in animals and humans, followed by E. multilocularis and E. shiquicus, with high genetic diversity circulating among the animals and humans in this area. Further studies are needed to cover many sample collection sites and larger numbers of pathogen isolates, which may reveal abundant strains and/or other haplotypes in the hydatid cysts infecting human and animal populations of the QTPA, China.


Subject(s)
Echinococcosis/parasitology , Echinococcosis/veterinary , Echinococcus/classification , Echinococcus/genetics , Genetic Variation , Genotype , Animals , Animals, Domestic , Animals, Wild , China , Echinococcus/isolation & purification , Electron Transport Complex IV/genetics , Haplotypes , Humans
16.
Parasitol Res ; 118(7): 2041-2051, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31098727

ABSTRACT

The occurrence of Cryptosporidium and Giardia species in slaughter, sewage and river waters of the Qinghai Tibetan Plateau Area (QTPA), China, was investigated. A total of 456 samples were collected from different locations in the QTPA to study the contamination rates of Cryptosporidium spp. and Giardia via PCR and subsequent sequence analysis. Ten samples were Cryptosporidium positive, and 97 were Giardia positive, as confirmed by PCR amplification of the SSU rRNA gene. The percentages of positive Cryptosporidium and Giardia detection were 2.2% (10/456) and 21.3% (97/456), respectively. Cryptosporidium was detected in only sewage and river waters. Six species of Cryptosporidium were identified: Cryptosporidium hominis (n = 5), C. andersoni (n = 1), C. environmental (n = 1), C. struthionis (n = 1), C. canis (n = 1), and C. parvum (n = 1). G. duodenalis assemblage A was identified in almost all positive samples (n = 96), and one sample harboured G. duodenalis assemblage E. The results suggest that Cryptosporidium and Giardia species circulate through the aqueous environment and different hosts. Therefore, we strongly recommend that the local government and health authorities in China undertake control measures to reduce the contamination of water sources by these protozoa to protect the health of humans and animals.


Subject(s)
Cryptosporidiosis/parasitology , Cryptosporidium/isolation & purification , Giardia/isolation & purification , Giardiasis/parasitology , Water/parasitology , Abattoirs , Animals , Cryptosporidiosis/epidemiology , Cryptosporidium/classification , Cryptosporidium/genetics , Feces/parasitology , Giardia/classification , Giardia/genetics , Giardiasis/epidemiology , Humans , Rivers/parasitology , Sewage/parasitology , Tibet/epidemiology
17.
Korean J Parasitol ; 56(2): 195-198, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29742875

ABSTRACT

Six cystic metacestodes were found in the abdominal muscles of a wild rabbit, Lepus sinensis, in China. The coenurus contained one or more scolices armed with hooklets. Mitochondrial cox1 (1,623 bp) confirmed 98% homology with cox1 of Taenia serialis. This is the first report of T. serialis infection in an intermediate host in the Qinghai Tibetan Plateau Area, China.


Subject(s)
Animals, Wild/parasitology , Cestode Infections/parasitology , Cestode Infections/veterinary , Rabbits/parasitology , Rodent Diseases/parasitology , Taenia/isolation & purification , Taenia/pathogenicity , Animals , China , Male , Phylogeny , Taenia/anatomy & histology , Taenia/genetics , Tibet , Zoonoses/prevention & control
18.
Parasitol Res ; 117(6): 1793-1800, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680940

ABSTRACT

Cryptosporidium and Giardia are ubiquitous parasites that infect humans and animals. Few reports are available on the prevalence of these two protozoan parasites in yaks (Bos grunniens). In this study, 344 faecal samples were collected from yaks with diarrhoea in the Chenduo and Nangqian counties of Qinghai Province, China. Cryptosporidium spp. and Giardia duodenalis were detected by light and immunofluorescence microscopy and nested PCR (nPCR). Fifteen samples were positive (4.5%) by Kinyoun staining, 40 (11.6%) samples were positive by immunofluorescence test (IFT), and 39 (11.3%) samples were positive by nPCR for Cryptosporidium spp., Cryptosporidium bovis (11/39, 28.2%) was the most prevalent species, followed by C. ryanae (6/39, 15.4%), C. andersoni (5/39, 12.8%), C. struthionis (5/39, 12.8%), C. parvum (5/39, 12.8%), C. hominis (4/39, 10.3%) and C. canis (3/39, 7.7%). Thirteen out of 344 (3.8%) samples were positive for Giardia by simple microscopy, 20 (5.8%) by IFT and 18 samples (5.2%) yak faecal samples were Giardia positive by nPCR. Two G. duodenalis assemblages (B, E) were detected in this study. Nine positive samples for G. duodenalis assemblage E were from the towns of Xiewu (8/9, 4.9%) and Xiangda (1/9, 1.3%), and nine positive samples (9/9, 8.5%) for G. duodenalis assemblage B were from the town of Zhenqin. This report provides information about infection with Cryptosporidium species and G. duodenalis assemblages in domesticated 1-2-month-old highland yaks living in the Qinghai-Tibet Plateau region of China.


Subject(s)
Cryptosporidiosis/epidemiology , Cryptosporidium/classification , Cryptosporidium/genetics , Giardia lamblia/genetics , Giardiasis/epidemiology , Animals , Cattle , China/epidemiology , Cryptosporidiosis/parasitology , Feces/parasitology , Giardia lamblia/classification , Giardiasis/parasitology , Humans , Polymerase Chain Reaction , Prevalence , Tibet/epidemiology
19.
Parasitol Res ; 117(5): 1401-1407, 2018 May.
Article in English | MEDLINE | ID: mdl-29532219

ABSTRACT

Cryptosporidium is one of the most important genera of intestinal zoonotic pathogens, which can infect various hosts and cause diarrhoea. There is little available information about the molecular characterisation and epidemiological prevalence of Cryptosporidium spp. in Microtus fuscus (Qinghai vole) and Ochotona curzoniae (wild plateau pika) in the Qinghai-Tibetan Plateau area of Qinghai Province, Northwest China. Therefore, the aim of this study was to determine Cryptosporidium species/genotypes and epidemiological prevalence in these mammals by detecting the SSU rRNA gene by PCR amplification. The Cryptosporidium spp. infection rate was 8.9% (8/90) in Qinghai voles and 6.25% (4/64) in wild plateau pikas. Positive samples were successfully sequenced, and the following Cryptosporidium species were found: C. parvum, C. ubiquitum, C. canis and a novel genotype in Qinghai voles and C. parvum and a novel genotype in wild plateau pikas. This is the first report of Cryptosporidium infections in M. fuscus and wild O. curzoniae in Northwest China. The results suggest the possibility of Cryptosporidium species transmission among these two hosts, the environment, other animals and humans and provide useful molecular epidemiological data for the prevention and control of Cryptosporidium infections in wild animals and the surrounding environments. The results of the present study indicate the existence of Cryptosporidium species infections that have potential public health significance. This is the first report of Cryptosporidium multi-species infections in these animal hosts.


Subject(s)
Arvicolinae/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/transmission , Cryptosporidium/isolation & purification , Lagomorpha/parasitology , Animals , Animals, Wild/parasitology , Base Sequence , China/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/classification , Cryptosporidium/genetics , DNA, Ribosomal/genetics , Feces/parasitology , Genotype , Humans , Polymerase Chain Reaction , Tibet/epidemiology
20.
Vet Parasitol ; 250: 40-44, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29329622

ABSTRACT

Giardia duodenalis is an important intestinal protozoan parasite with a wide range of hosts, including humans, livestock and wildlife. The purpose of this study was to determine the prevalence of G. duodenalis infections among cattle and sheep in the Qinghai-Tibetan Plateau Area (QTPA) and to assess the potential risk of the zoonotic transmission of this pathogen. A total of 454 stool specimens were collected and examined using the nested PCR method based on the G. duodenalis SSUrRNA gene fragment. Thirty-nine out of 389 cattle specimens examined were positive (10%) for the G. duodenalis infection. After the sequence analysis of the SSUrRNA gene, all detected G. duodenalis belong to assemblage E. No G. duodenalis infections were found in the 65 investigated samples from sheep. Our data therefore indicates that G. duodenalis is a common parasite in cattle in the QTPA, China and that cattle appear to be a reservoir of G. duodenalis for other animals and the environmental water supplies in the area.


Subject(s)
Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Giardia lamblia/genetics , Giardiasis/veterinary , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Animals , Cattle , China/epidemiology , DNA, Protozoan/genetics , Disease Reservoirs/parasitology , Giardiasis/epidemiology , Giardiasis/parasitology , Prevalence , RNA, Ribosomal, 18S/genetics , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...