Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
Langmuir ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976874

ABSTRACT

Microfluidic technology based on a compound droplet plays an increasingly significant role in different disciplines, such as genetic detection, drug transportation, and cell culture. Low-cost, stable, and rapid methods to produce compound droplets are more and more in demand. In this paper, a hybrid 3D-printed microfluidic device was designed to realize efficient fabrication of multicore compound droplets, where a first oil phase (O1) is cut by a water phase (W) to form pure O1 droplets, and then the W phase containing O1 droplets is cut by a second oil phase (O2) to generate multicore compound droplets. A series of experiments were conducted to determine the influence of the flow rate and viscosity on the formation dynamics of compound droplets. It is found that the number of inner cores is mainly affected by the W and O2 phases, and a W phase with higher viscosity and a higher flow rate is more likely to produce compound droplets with more inner cores. This work provides new insights into the formation dynamics of compound droplets and can contribute to the optimization of emulsion production.

2.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953411

ABSTRACT

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

3.
Environ Sci Technol ; 58(26): 11301-11308, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38900968

ABSTRACT

Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.


Subject(s)
Balkan Nephropathy , Floods , Balkan Nephropathy/chemically induced , Balkan Nephropathy/epidemiology , Humans , Coal , Serbia , Soil Pollutants/toxicity , Aristolochic Acids , Animals , Aristolochia/chemistry , Balkan Peninsula , Wood , Kidney Diseases/chemically induced
4.
Nanoscale ; 16(27): 13061-13070, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38887082

ABSTRACT

The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.


Subject(s)
Biosensing Techniques , Carcinoembryonic Antigen , Molybdenum , Oxides , Molybdenum/chemistry , Oxides/chemistry , Carcinoembryonic Antigen/blood , Carcinoembryonic Antigen/analysis , Humans , Electrodes , Limit of Detection , Electrochemical Techniques , Semiconductors
5.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

6.
Article in English | MEDLINE | ID: mdl-38814824

ABSTRACT

Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury.

7.
Article in English | MEDLINE | ID: mdl-38647185

ABSTRACT

Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre-PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia-Negative (Ph-negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph-negative MPN patients, including ET, PV, pre-PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38- cells on CD34+cells, CD13dim+CD11b- cells in granulocytes, CD38str+CD19+/-plasma, and CD123+HLA-DR-basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38- on CD34+ cells and platelet counts to distinguish between ET and pre-PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre-PMF from ET and guides treatment decisions.

8.
BMC Psychiatry ; 24(1): 299, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641826

ABSTRACT

BACKGROUND: Despite ongoing research, the underlying causes of schizophrenia remain unclear. Aspartate and asparagine, essential amino acids, have been linked to schizophrenia in recent studies, but their causal relationship is still unclear. This study used a bidirectional two-sample Mendelian randomization (MR) method to explore the causal relationship between aspartate and asparagine with schizophrenia. METHODS: This study employed summary data from genome-wide association studies (GWAS) conducted on European populations to examine the correlation between aspartate and asparagine with schizophrenia. In order to investigate the causal effects of aspartate and asparagine on schizophrenia, this study conducted a two-sample bidirectional MR analysis using genetic factors as instrumental variables. RESULTS: No causal relationship was found between aspartate and schizophrenia, with an odds ratio (OR) of 1.221 (95%CI: 0.483-3.088, P-value = 0.674). Reverse MR analysis also indicated that no causal effects were found between schizophrenia and aspartate, with an OR of 0.999 (95%CI: 0.987-1.010, P-value = 0.841). There is a negative causal relationship between asparagine and schizophrenia, with an OR of 0.485 (95%CI: 0.262-0.900, P-value = 0.020). Reverse MR analysis indicates that there is no causal effect between schizophrenia and asparagine, with an OR of 1.005(95%CI: 0.999-1.011, P-value = 0.132). CONCLUSION: This study suggests that there may be a potential risk reduction for schizophrenia with increased levels of asparagine, while also indicating the absence of a causal link between elevated or diminished levels of asparagine in individuals diagnosed with schizophrenia. There is no potential causal relationship between aspartate and schizophrenia, whether prospective or reverse MR. However, it is important to note that these associations necessitate additional research for further validation.


Subject(s)
Asparagine , Schizophrenia , Humans , Asparagine/genetics , Aspartic Acid/genetics , Schizophrenia/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prospective Studies
9.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Article in English | MEDLINE | ID: mdl-38685214

ABSTRACT

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Subject(s)
Insect Proteins , Locusta migratoria , Morphogenesis , Nymph , Animals , Locusta migratoria/growth & development , Locusta migratoria/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Nymph/growth & development , RNA Interference , Intestines
10.
Huan Jing Ke Xue ; 45(3): 1665-1673, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471878

ABSTRACT

Changes in soil nitrogen components in tea gardens affect the soil nitrogen supply capacity and nitrogen cycle. In this study, soil samples were collected from forest land, cultivated land, and tea gardens with different plantation ages (30, 50, and 70 years) to explore the changes in soil nitrogen components and their relationship with physicochemical properties and enzyme activities. The results showed that:① with the increase in tea plantation age, the silt, total phosphorus, and urease and catalase activities gradually increased, whereas the sand, clay, pH, electrical conductivity, soil organic carbon, and the activities of invertase gradually decreased. The alkaline phosphatase activity increased first and then decreased with the increase in tea plantation age, and no significant differences were observed in soil water content and acid phosphatase activity. ② With the increase in tea plantation age, the contents of acid ammonia nitrogen, amino acid nitrogen, and nitrate nitrogen (NO3--N) increased significantly, and the contents of total nitrogen, acid ammonia nitrogen, hydrolyzable unknown nitrogen, and non-hydrolyzable nitrogen in tea gardens were significantly higher than those in forest land. ③ The total phosphorus, alkaline phosphatase, and urease were the main factors affecting soil nitrogen components. Among them, organic nitrogen components were significantly correlated with total phosphorus and alkaline phosphatase, and inorganic nitrogen components were significantly correlated with alkaline phosphatase, whereas total nitrogen had significant correlations with sand, silt, total phosphorus, urease, and alkaline phosphatase.


Subject(s)
Alkaline Phosphatase , Soil , Soil/chemistry , Sand , Nitrogen/analysis , Carbon , Urease , Ammonia , Phosphorus/analysis , Tea , Soil Microbiology , China
11.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530899

ABSTRACT

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Subject(s)
Air Pollutants , Mitochondrial Diseases , Humans , Air Pollutants/analysis , Phosphorylcholine , Particulate Matter/analysis , Lung , Carbon/analysis , Environmental Monitoring
12.
Inorg Chem ; 63(7): 3327-3334, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38315152

ABSTRACT

Recently, facilely designable metal-organic frameworks have gained attention in the construction of photothermal conversion materials. Nonetheless, most of the previously reported photothermal conversion metal-organic frameworks exhibit limited light absorption capabilities. In this work, a distinctive metal-organic framework with heterogeneous periodic alternate spatial arrangements of metal-oxygen clusters and perylene-based derivative molecules was prepared by in situ synthesis. The building blocks in this inimitable structure behave as both electron donors and electron acceptors, giving rise to the significant inherent charge transfer in this crystalline material, resulting in a narrow band gap with excellent panchromatic absorption, with the ground state being the charge transfer state. Moreover, it can retain excellent air-, photo-, and water-stability in the solid state. The excellent stability and broad light absorption characteristics enable the effective realization of near-infrared (NIR) photothermal conversion, including infrequent NIR-II photothermal conversion, in this perylene-based metal-organic framework.

13.
Int J Biol Macromol ; 263(Pt 2): 130245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367779

ABSTRACT

The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.


Subject(s)
Drosophila Proteins , Integrins , Animals , Integrins/metabolism , Drosophila/genetics , Epithelium/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Extracellular Matrix/metabolism
14.
Insect Sci ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214184

ABSTRACT

The foregut, located at the front of the digestive tract, serves a vital role in insects by storing and grinding food into small particles. The innermost layer of the foregut known as the chitinous intima, comes into direct contact with the food and acts as a protective barrier against abrasive particles. Knickkopf (Knk) is required for chitin organization in the chitinous exoskeleton, tracheae and wings. Despite its significance, little is known about the biological function of Knk in the foregut. In this study, we found that LmKnk was stably expressed in the foregut, and highly expressed before molting in Locusta migratoria. To ascertain the biological function of LmKnk in the foregut, we synthesized specific double-stranded LmKnk (dsLmKnk) and injected it into locusts. Our findings showed a significant decrease in the foregut size, along with reduced food intake and accumulation of residues in the foregut after dsLmKnk injection. Morphological observations revealed that newly formed intima became thinner and lacked chitin lamella. Furthermore, fluorescence immunohistochemistry revealed that LmKnk was located in the apical region of new intima and epithelial cells. Taken together, this study provides insights into the biological function of LmKnk in the foregut, and identifies the potential target gene for exploring biological pest management strategies.

15.
Huan Jing Ke Xue ; 45(1): 386-395, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216488

ABSTRACT

Spatial prediction of the concentrations of soil heavy metals (HMs) in cultivated land is critical for monitoring cultivated land contamination and ensuring sustainable eco-agriculture. In this study, 32 environmental variables from terrain, climate, soil attributes, remote-sensing information, vegetation indices, and anthropogenic activities were used as auxiliary variables, and random forest (RF), regression Kriging (RK), ordinary Kriging (OK), and multiple linear regression (MLR) models were proposed to predict the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in cultivated soils. In comparison to those of RK, OK, and MLR, the RF model had the best prediction performance for As, Cd, Cr, Hg, Pb, and Zn, whereas the OK and RK models had highest prediction performance for Cu and Ni, respectively, showing that R2 was the highest, and mean absolute error (MAE) and root mean square error (RMSE) were the lowest. The prediction performance of the spatial distribution of soil HMs under different prediction methods was basically consistent. The high value areas of eight HMs concentrations were all distributed in the southern plain area. However, the RF model depicted the details of spatial prediction more prominently. Moreover, the importance ranking of influencing factors derived from the RF model indicated that the spatial variation in concentrations of the eight HMs in Lanxi City were mainly affected by the combined effects of Se, TN, pH, elevation, annual average temperature, annual average rainfall, distance from rivers, and distance from factories. Given the above, random forest models could be used as an effective method for the spatial prediction of soil heavy metals, providing scientific reference for regional soil pollution investigation, assessment, and management.

16.
ACS Nano ; 18(4): 3669-3680, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38241472

ABSTRACT

The construction of two-dimensional (2D) van der Waals (vdW) heterostructures over black phosphorus (BP) has been attracting significant attention to better utilize its inherent properties. The sandwich of zero-dimensional (0D) noble metals within BP-based vdW heterostructures can provide efficient catalytic channels, modulating their surface redox potentials and therefore inducing versatile functionalities. Herein, we realize a 2D WS2-Au-BP heterostructure, in which Au nanoparticles are connected between BP and WS2 via ionic bonds. The ultralow conduction band minimum position, the reduced adsorption energies of O2, and the increased dissociation barrier energy of O2- into 2O contribute greatly to improving the long-term stability of BP in the air. The formation of heterostructures can reduce the potential barrier energy in target gas molecules, thus enhancing the absorption energy and charge transfer. Taking the paramagnetic NO2 gas molecules as a representative, a stable response magnitude of 2.11 to 100 ppb NO2 is achieved for 80 days, which is far larger than the initial responses of most BP-based materials. A practical gas sensing system is also developed to demonstrate its real-world implementation. This work provides a promising demonstration of 0D noble metal within 2D BP-based vdW heterostructure for simultaneously improving the long-term stability and room-temperature reversible gas sensing.

17.
Anal Chem ; 96(5): 1880-1889, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38253570

ABSTRACT

Compositional analysis of organic aerosols (OAs) at the molecular level has been a long-standing challenge in field and laboratory studies. In this work, we applied different extraction protocols to aerosol samples collected from the ambient atmosphere and biomass burning sources, followed by Orbitrap mass spectrometric analysis with a soft electrospray ionization source operating in both positive and negative ionization modes. To systematically map the distribution of mono- and dioxygenated aromatic compounds (referred to as aromatic CHO1 and CHO2 formulas) in OA, we developed a unique two-dimensional Kendrick mass defect (2D KMD) framework. Our analysis unveiled a total of (76, 64, 70) aromatic CHO1 formulas and (103, 110, 106) CHO2 formulas, corresponding to samples obtained from ambient air, rice straw burning, and sugarcane leaf burning, respectively. These results reveal a significant number of additional distinct formulas exclusively present in ambient samples, suggesting a significant chemical transformation of OAs in the atmosphere. The analytical approach can be further extended to incorporate multiple layers of 2D KMD, enabling systematic mapping of the unexplored chemical space for complex environmental samples.

18.
Curr Med Sci ; 44(1): 81-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277019

ABSTRACT

OBJECTIVE: YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors; differentiating between these roles may depend on the YAP1 phosphorylation pattern. The specific function of YAP1 in B cell acute lymphoblastic leukemia (B-ALL), however, is currently unclear. Thus, in the present study, the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets. METHODS: The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting, quantitative real-time polymerase chain reaction, flow cytometry, immunostaining, and nude mouse subcutaneous tumorigenesis experiments. Gene expression levels of Hippo pathway-related molecules before and after verteporfin (VP) treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells. RESULTS: Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels. YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells; YAP1 was distributed in the nuclei in NALM6 cells. Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase. Before and after VP treatment, the expression of the upstream gene LATS1 was upregulated; its overexpression promoted YAP1-Ser127 phosphorylation. Further, YAP1 was distributed in the plasma. CONCLUSION: LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function; thus, VP, which targets this axis, may serve as a new therapeutic method for improving the outcomes for B-ALL patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Signal Transduction , Animals , Mice , Humans , Phosphorylation , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Carcinogenesis
19.
Zool Res ; 45(1): 79-94, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38114435

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein ( LBP), but the underlying epigenetic mechanisms remain understudied. Herein, LBP -/- rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency. Notably, LBP -/- reduced the inflammatory response but markedly aggravated high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome. In total, 1 128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type (WT) and LBP -/- NAFLD rats. Based on integrative analysis, CCAAT/enhancer-binding protein ß (C/EBPß) was identified as a pivotal transcription factor (TF) and contributor to dysregulated histone acetylome H3K27ac, and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD. This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPß and functional gene SCD as potential regulators and therapeutic targets.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Rats , Acetylation , Histones/metabolism , Lipids , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/veterinary , Stearoyl-CoA Desaturase/metabolism
20.
Huan Jing Ke Xue ; 44(12): 6495-6507, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098378

ABSTRACT

The compositional characteristics, concentration of nitroaromatic compounds(NACs) in PM2.5 in urban Shanghai, and their correlation with gaseous precursors were investigated. A total of 39 winter and 46 summer PM2.5 samples from 2020 to 2021 were collected using a high-flow sampler and analyzed via ultra-performance liquid chromatography coupled with ESI-Orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). Quantitative analysis was performed on 12 NACs compounds, combined with backward trajectory meteorological elements, molecular composition, and classification analysis of CHON substances. The results showed that a total of 12 NACs had an average concentration in winter of 17.1 ng·m-3, which was three times higher than that in summer(5.7 ng·m-3), mainly due to air masses in winter coming primarily from the northern part of China with more biomass burning, whereas more air masses in summer came from the cleaner southeastern ocean. 4-Nitrophenol was the most abundant species of NACs in winter, whereas 4-nitrophenol(clean days) and 4-hydroxy-3-nitrobenzoic acid(polluted days) were the most abundant species in summer. Qualitative analysis based on features such as aromatic ring equivalence number(Xc), O/C, and H/C values for the identification and characterization of monocyclic and polycyclic aromatic compounds showed that CHON compounds were mainly aromatic compounds in winter and summer in urban Shanghai. The number and abundance of CHON compounds detected on PM2.5 polluted days were 2 and 1.5 times higher(winter) and 2.5 and 2 times higher(summer) than that on clean days, respectively. Comparing the analysis results of clean and polluted days in winter and summer, it was found that 80% of the CHON compounds with a relative abundance in the top 10 had O/N ≥ 3 and RDBE values between 5 and 8. The results suggest that these highly abundant CHON analogs may have had mononitro- or dinitro-substituted benzene rings. Correlation analysis between gaseous precursors and NACs indicated that oxidative reactive formation of VOCs(benzene, toluene, etc.) from anthropogenic emissions was the main source of NACs in summer. By contrast, it was influenced by a combination of biomass combustion emissions and secondary formation of oxidative NOx from anthropogenic VOCs in winter.

SELECTION OF CITATIONS
SEARCH DETAIL
...