Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 839
Filter
1.
J Org Chem ; 89(12): 8706-8720, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38825808

ABSTRACT

In this study, we systematically investigated the regioselective glycosylation of 2,4-OH mannoside and galactoside acceptors since regioselective protection of their 3- and 6-OHs is readily achieved. By altering the protecting groups at 1-, 3-, and 6-positions of such acceptors, we finally screened p-methoxyphenyl 3-OBn, 6-OTBDPS, α-mannoside, and ß-galactoside acceptors whose 2-OHs exhibited excellent selectivity for glycosylation with various glycosyl donors, leading to 1,2-linked products in 70-82% yields. By utilizing such acceptors, a series of 2,4-linked trisaccharide products (53-65% yields over two steps) have been highly efficiently synthesized without the need for complex protection/deprotection operations at the 2- and 4-positions of these acceptors.

3.
Chem Commun (Camb) ; 60(50): 6362-6374, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836312

ABSTRACT

Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponent tandem reactions. In contrast to commonly used homogeneous transition metal catalysts, MCOFs possess regular porosity, high crystallinity, and rich metal chelation sites that facilitate the uniform distribution and anchoring of metals within their cavities. Thus, they show extremely high activity and have recently been widely employed as catalysts for multicomponent tandem reactions. It is timely to conduct a review of MCOFs in multicomponent tandem reactions, in order to offer guidance and assistance for the synthesis of MCOF catalysts and their application in multicomponent tandem reactions. This review provides a comprehensive overview of the design and synthesis of MCOFs, their application and progress in multicomponent tandem reactions, and the primary challenges encountered during their current development with the aim of contributing to the promotion of the field.

5.
Int J Gen Med ; 17: 2299-2309, 2024.
Article in English | MEDLINE | ID: mdl-38799198

ABSTRACT

Objective: This study aimed to explore specific biochemical indicators and construct a risk prediction model for diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). Methods: This study included 234 T2D patients, of whom 166 had DKD, at the First Hospital of Jilin University from January 2021 to July 2022. Clinical characteristics, such as age, gender, and typical hematological parameters, were collected and used for modeling. Five machine learning algorithms [Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF)] were used to identify critical clinical and pathological features and to build a risk prediction model for DKD. Additionally, clinical data from 70 patients (nT2D = 20, nDKD = 50) were collected for external validation from the Third Hospital of Jilin University. Results: The RF algorithm demonstrated the best performance in predicting progression to DKD, identifying five major indicators: estimated glomerular filtration rate (eGFR), glycated albumin (GA), Uric acid, HbA1c, and Zinc (Zn). The prediction model showed sufficient predictive accuracy with area under the curve (AUC) values of 0.960 (95% CI: 0.936-0.984) and 0.9326 (95% CI: 0.8747-0.9885) in the internal validation set and external validation set, respectively. The diagnostic efficacy of the RF model (AUC = 0.960) was significantly higher than each of the five features screened with the highest feature importance in the RF model. Conclusion: The online DKD risk prediction model constructed using the RF algorithm was selected based on its strong performance in the internal validation.

6.
J Med Chem ; 67(10): 7921-7934, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713486

ABSTRACT

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.


Subject(s)
Breast Neoplasms , Cell Proliferation , Protein-Arginine N-Methyltransferases , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Female , Animals , Mice , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use
7.
ACS Appl Mater Interfaces ; 16(21): 27566-27575, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743438

ABSTRACT

We selectively improved the viewing angle characteristics and light extraction efficiency of blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) by tailoring a nanofiber-shaped Si3N4 layer, which was used as an internal scattering layer. The diameter of the polymer nanofibers changed according to the mass ratio of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) in the polymer solution for electrospinning. The Si3N4 nanofiber (SNF) structure was fabricated by etching an Si3N4 film using the PAN/PMMA nanofiber as a mask, making it easier to adjust parameters, such as the diameter, open ratio, and height, even though the SNF structure was randomly shaped. The SNF structures exhibited lower transmittance and higher haze with increasing diameter, showing little correlation with their height. However, all the structures demonstrated a total transmittance of over 80%. Finally, by applying the SNF structures to the blue TADF OLEDs, the external quantum efficiency was increased by 15.6%. In addition, the current and power efficiencies were enhanced by 23.0% and 25.6%, respectively. The internal light-extracting SNF structure also exhibited a synergistic effect with the external light-extracting structure. Furthermore, when the viewing angle changed from 0° to 60°, the peak wavelength and CIE coordinate shift decreased from 20 to 6 nm and from 0.0561 to 0.0243, respectively. These trends were explained by the application of Snell's law to the light path and were ultimately validated through finite-difference time-domain simulations.

8.
Angew Chem Int Ed Engl ; 63(25): e202402882, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38594208

ABSTRACT

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

9.
Sci Rep ; 14(1): 9223, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649732

ABSTRACT

A series of 20 novel gefitinib derivatives incorporating the 1,2,3-triazole moiety were designed and synthesized. The synthesized compounds were evaluated for their potential anticancer activity against EGFR wild-type human non-small cell lung cancer cells (NCI-H1299, A549) and human lung adenocarcinoma cells (NCI-H1437) as non-small cell lung cancer. In comparison to gefitinib, Initial biological assessments revealed that several compounds exhibited potent anti-proliferative activity against these cancer cell lines. Notably, compounds 7a and 7j demonstrated the most pronounced effects, with an IC50 value of 3.94 ± 0.17 µmol L-1 (NCI-H1299), 3.16 ± 0.11 µmol L-1 (A549), and 1.83 ± 0.13 µmol L-1 (NCI-H1437) for 7a, and an IC50 value of 3.84 ± 0.22 µmol L-1 (NCI-H1299), 3.86 ± 0.38 µmol L-1 (A549), and 1.69 ± 0.25 µmol L-1 (NCI-H1437) for 7j. These two compounds could inhibit the colony formation and migration ability of H1299 cells, and induce apoptosis in H1299 cells. Acute toxicity experiments on mice demonstrated that compound 7a exhibited low toxicity in mice. Based on these results, it is proposed that 7a and 7j could potentially be developed as novel drugs for the treatment of lung cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Gefitinib , Lung Neoplasms , Triazoles , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Gefitinib/pharmacology , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Apoptosis/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Xenograft Model Antitumor Assays , A549 Cells , Structure-Activity Relationship
10.
Nucleic Acids Res ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676947

ABSTRACT

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.

11.
Nature ; 627(8003): 313-320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480964

ABSTRACT

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Subject(s)
Equipment Design , Skin , Transistors, Electronic , Wearable Electronic Devices , Humans , Silicon , Nanotubes, Carbon , Touch
12.
Small Methods ; : e2301603, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459640

ABSTRACT

There is a growing interest in developing paramagnetic nanoparticles as responsive magnetic resonance imaging (MRI) contrast agents, which feature switchable T1 image contrast of water protons upon biochemical cues for better discerning diseases. However, performing an MRI is pragmatically limited by its cost and availability. Hence, a facile, routine method for measuring the T1 contrast is highly desired in early-stage development. This work presents a single-point inversion recovery (IR) nuclear magnetic resonance (NMR) method that can rapidly evaluate T1 contrast change by employing a single, optimized IR pulse sequence that minimizes water signal for "off-state" nanoparticles and allows for sensitively measuring the signal change with "switch-on" T1 contrast. Using peptide-induced liposomal gadopentetic acid (Gd3+ -DTPA) release and redox-sensitive manganese oxide (MnO2 ) nanoparticles as a demonstration of generality, this method successfully evaluates the T1 shortening of water protons caused by liposomal Gd3+ -DTPA release and Mn2+ formation from MnO2 reduction. Furthermore, the NMR measurement is highly correlated to T1 -weighted MRI scans, suggesting its feasibility to predict the MRI results at the same field strength. This NMR method can be a low-cost, time-saving alternative for pre-MRI evaluation for a diversity of responsive T1 contrast systems.

13.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451090

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Synovitis , Mice , Animals , Chondrogenesis , Nanomedicine , Osteoarthritis/drug therapy , Cell Differentiation , Inflammation/metabolism , Synovitis/metabolism , RNA, Messenger/metabolism
14.
Dalton Trans ; 53(15): 6779-6790, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38535981

ABSTRACT

Inherently disordered structures of carbon nitrides have hindered an atomic level tunability and understanding of their catalytic reactivity. Starting from a crystalline carbon nitride, poly(triazine imide) or PTI/LiCl, the coordination of copper cations to its intralayer N-triazine groups was investigated using molten salt reactions. The reaction of PTI/LiCl within CuCl or eutectic KCl/CuCl2 molten salt mixtures at 280 to 450 °C could be used to yield three partially disordered and ordered structures, wherein the Cu cations are found to coordinate within the intralayer cavities. Local structural differences and the copper content, i.e., whether full or partial occupancy of the intralayer cavity occurs, were found to be dependent on the reaction temperature and Cu-containing salt. Crystallites of Cu-coordinated PTI were also found to electrophoretically deposit from aqueous particle suspensions onto either graphite or FTO electrodes. As a result, electrocatalytic current densities for the reduction of CO2 and H2O reached as high as ∼10 to 50 mA cm-2, and remained stable for >2 days. Selectivity for the reduction of CO2 to CO vs. H2 increases for thinner crystals as well as for when two Cu cations coordinate within the intralayer cavities of PTI. Mechanistic calculations have also revealed the electrocatalytic activity for CO2 reduction requires a smaller thermodynamic driving force with two neighboring Cu atoms per cavity as compared to a single Cu atom. These results thus establish a useful synthetic pathway to metal-coordination in a crystalline carbon nitride and show great potential for mediating stable CO2 reduction at sizable current densities.

15.
Behav Brain Res ; 465: 114972, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38552744

ABSTRACT

The hippocampal salt-inducible kinase 2 (SIK2)-CREB-regulated transcription co-activator 1 (CRTC1) system has been demonstrated to participate in not only the pathogenesis of depression but also the antidepressant mechanisms of several antidepressant medications including fluoxetine, paroxetine, and mirtazapine. Like fluoxetine, paroxetine is also a widely used selective serotonin (5-HT) reuptake inhibitor (SSRI). Recent studies have indicated that paroxetine also modulates several pharmacological targets other than the 5-HT system. Here, we speculate that paroxetine regulates the hippocampal SIK2-CRTC1 system. Chronic stress models of depression, various behavioral tests, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription PCR, and genetic knockdown were used together in the present study. Our results show that the antidepressant actions of paroxetine in mice models of depression were accompanied by its preventing effects against chronic stress on hippocampal SIK2, CRTC1, and CRTC1-CREB binding. In contrast, genetic knockdown of hippocampal CRTC1 notably abrogated the antidepressant effects of paroxetine in mice. In summary, regulating hippocampal SIK2 and CRTC1 participates in the antidepressant mechanism of paroxetine, extending the knowledge of its pharmacological targets.


Subject(s)
Fluoxetine , Paroxetine , Animals , Mice , Antidepressive Agents/pharmacology , Fluoxetine/pharmacology , Hippocampus/metabolism , Paroxetine/pharmacology , Serotonin/metabolism
16.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457049

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
Micromachines (Basel) ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38542575

ABSTRACT

Luminous efficiency is a pivotal factor for assessing the performance of optoelectronic devices, wherein light loss caused by diverse factors is harvested and converted into the radiative mode. In this study, we demonstrate a nanoscale vacuum photonic crystal layer (nVPCL) for light extraction enhancement. A corrugated semi-transparent electrode incorporating a periodic hollow-structure array was designed through a simulation that utilizes finite-difference time-domain computational analysis. The corrugated profile, stemming from the periodic hollow structure, was fabricated using laser interference lithography, which allows the precise engineering of various geometrical parameters by controlling the process conditions. The semi-transparent electrode consisted of a 15 nm thick Ag film, which acted as the exit mirror and induced microcavity resonance. When applied to a conventional green organic light-emitting diode (OLED) structure, the optimized nVPCL-integrated device demonstrated a 21.5% enhancement in external quantum efficiency compared to the reference device. Further, the full width at half maximum exhibited a 27.5% reduction compared to that of the reference device, demonstrating improved color purity. This study presents a novel approach by applying a hybrid thin film electrode design to optoelectronic devices to enhance optical efficiency and color purity.

18.
NAR Genom Bioinform ; 6(1): lqae008, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38298182

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) tissues are widely available specimens for clinical studies. However, RNA degradation in FFPE tissues often restricts their utility. In this study, we determined optimal FFPE preparation conditions, including tissue ischemia at 4°C (<48 h) or 25°C for a short time (0.5 h), 48-h fixation at 25°C and sampling from FFPE scrolls instead of sections. Notably, we observed an increase in intronic reads and a significant change in gene rank based on expression level in the FFPE as opposed to fresh-frozen (FF) samples. Additionally, we found that more reads were mapped to genes associated with chemical stimulus in FFPE samples. Furthermore, we demonstrated that more degraded genes in FFPE samples were enriched in genes with short transcripts and high free energy. Besides, we found 40 housekeeping genes exhibited stable expression in FF and FFPE samples across various tissues. Moreover, our study showed that FFPE samples yielded comparable results to FF samples in dimensionality reduction and pathway analyses between case and control samples. Our study established the optimal conditions for FFPE preparation and identified gene attributes associated with degradation, which would provide useful clues for the utility of FFPE tissues in clinical practice and research.

19.
Am Heart J ; 271: 76-83, 2024 May.
Article in English | MEDLINE | ID: mdl-38412895

ABSTRACT

BACKGROUND: Previous studies primarily demonstrated that transfemoral transcatheter aortic valve replacement (TAVR) with self-expanding valve appeared to be a safe and feasible treatment for patients with pure native aortic regurgitation (AR). However, the routine application of transfemoral TAVR for pure AR patients lacks support from randomized trials. TRIAL DESIGN: SEASON-AR trial is a prospective, multicenter, randomized, controlled, parallel-group, open-label trial, involving at least 20 sites in China, aiming to enroll 210 patients with pure native severe AR and high surgical risk. All enrolled patients are randomly assigned in a 1:1 fashion to undergo transfemoral TAVR with VitaFlowTM valve and receive guideline-directed medical therapy (GDMT) or to receive GDMT alone. The primary endpoint is the rate of major adverse cardiac events (MACE) at 12 months after the procedure, defined by the composite of all-cause mortality, disabling stroke, and rehospitalization for heart failure. The major secondary endpoints encompass various measures, including procedure-related complications, device success, 6-minute walk distance, and the occurrence of each individual component of the primary endpoint. After hospital discharge, follow-up was conducted through clinical visits or telephone contact at 1, 6, and 12 months. The follow-up will continue annually until 5 years after the index procedure to assess the long-term outcomes. CONCLUSION: SEASON-AR trial is the first study designed to investigate the clinical efficacy and safety of transfemoral TAVR with a self-expanding valve in patients with pure native severe AR with inoperable or high-risk, as compared to medical treatment only.


Subject(s)
Aortic Valve Insufficiency , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/epidemiology , Prospective Studies , Male , Female , Aged , Femoral Artery , Aortic Valve/surgery , Prosthesis Design , Stroke/prevention & control , Stroke/etiology , Stroke/epidemiology , China/epidemiology , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 52-56, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387899

ABSTRACT

OBJECTIVE: To construct a acute myeloid leukemia (AML) cell line in which HOXA5 gene is stably knocked out by CRISPR-Cas9-mediated gene editing technique, so as to clarify the effect of HOXA5 gene knockout on the proliferation of AML cells, and preliminarily explore the role of HOXA5 gene in the pathogenesis of AML. METHODS: The expression of HOXA5 in bone marrow mononuclear cells (BMMC) of non-tumor hematological patients and newly diagnosed AML patients was detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. The AML cell line KO-HOXA5-THP-1 was constructed in which HOXA5 gene was knocked out by CRISPR-Cas9-Mediated gene editing technique, and the knockout of HOXA5 gene was verified by qRT-PCR and Western blot, and the cell proliferation was detected by CCK-8 assay. RESULTS: Compared with non-tumor hematological patients, the levels of HOXA5 gene and protein in BMMC of newly diagnosed AML patients were significantly increased (P <0.05). The stable HOXA5 knockout cell line can be obtained by CRISPR-Cas9-Mediated gene editing technique, and the proliferation ability of THP-1 cells with HOXA5 gene knockout was significantly decreased (P <0.05). CONCLUSION: HOXA5 is highly expressed in AML cells, and knocking out HOXA5 can significantly affect the proliferation ability of AML cells, which provides a new potential therapeutic target for the precise treatment of AML.


Subject(s)
Gene Editing , Leukemia, Myeloid, Acute , Humans , CRISPR-Cas Systems , Leukemia, Myeloid, Acute/metabolism , Genes, Homeobox , Cell Line, Tumor , Cell Proliferation , Homeodomain Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...