Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.047
Filter
1.
Environ Pollut ; : 124482, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960118

ABSTRACT

Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread.

2.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953252

ABSTRACT

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Subject(s)
Fertility , Mice, Knockout , Spermatogenesis , Spermatogonia , Testis , Animals , Male , Spermatogenesis/genetics , Spermatogenesis/physiology , Mice , Fertility/genetics , Testis/metabolism , Spermatogonia/metabolism , Spermatogonia/cytology , Sertoli Cells/metabolism , Cell Differentiation , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/metabolism , RNA Stability/genetics , Infertility, Male/genetics
3.
J Innov Card Rhythm Manag ; 15(6): 5894-5901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948660

ABSTRACT

Knowledge of the impact of paroxysmal and persistent atrial fibrillation (AF) after catheter ablation on in-hospital outcomes and 30-day readmission remains limited. This study aimed to evaluate the procedural outcomes and 30-day readmission rates among patients with paroxysmal or persistent AF who were hospitalized for AF ablation. Using the Nationwide Readmissions Database, our study included patients aged ≥18 years with AF who were hospitalized and underwent catheter ablation during 2017-2020. Then, we compared the in-hospital procedural outcomes and 30-day readmission rates between patients with paroxysmal and persistent AF, respectively. Our study included 7310 index admissions for paroxysmal AF ablation and 9179 index admissions for persistent AF ablation. According to our analysis, there was no significant difference in procedural complications-namely, cerebrovascular accident, vascular complications, major bleeding requiring blood transfusion, phrenic nerve palsy, pericardial complications, and systemic embolization-between the persistent and paroxysmal AF groups. There was also no significant difference in early mortality between these groups (0.5% vs. 0.7%; P = .22). Persistent AF patients had significantly higher rates of prolonged index hospitalization (9.9% vs. 7.2%; P < .01) and non-home discharge (4.8% vs. 3.1%; P < .01). The 30-day readmission rates were comparable in both groups (10.0% vs. 9.5%; P = .34), with recurrent AF and heart failure being two of the most common causes of cardiac-related readmissions. Catheter ablation among hospitalized patients with paroxysmal or persistent AF resulted in no significant difference in procedural complications, early mortality, or 30-day readmission. This suggests that catheter ablation of AF can be performed with a relatively similar safety profile for both paroxysmal and persistent AF.

4.
Article in English | MEDLINE | ID: mdl-39001805

ABSTRACT

The attractive physical properties of two-dimensional (2D) semiconductors in group IVA-VIA have been fully revealed in recent years. Combining them with 2D ambipolar materials to construct van der Waals heterojunctions (vdWHs) can offer tremendous opportunities for designing multifunctional electronic and optoelectronic devices, such as logic switching circuits, half-wave rectifiers, and broad-spectrum photodetectors. Here, an optimized SnSe0.75S0.25 is grown to design a SnSe0.75S0.25/MoTe2 vdWH for logic operation and wide-spectrum photodetection. Benefiting from the excellent gate modulation under the appropriate sulfur substitution and type-II band alignment, the device exhibits reconfigurable antiambipolar and ambipolar transfer behaviors at positive and negative source-drain voltage (Vds), enabling stable XNOR logic operation. It also features a gate-modulated positive and negative rectifying behavior with rectification ratios of 265:1 and 1:196, confirming its potential as half-wave logic rectifiers. Besides, the device can respond from visible to infrared wavelength up to 1400 nm. Under 635 nm illumination, the maximum responsivity of 1.16 A/W and response time of 657/500 µs are achieved at the Vds of -2 V. Furthermore, due to the strong in-plane anisotropic structure of SnSe0.75S0.25-alloyed nanosheet and narrow bandgap of 2H-MoTe2, it shows a broadband polarization-sensitive function with impressive photocurrent anisotropic ratios of 15.6 (635 nm), 7.0 (808 nm), and 3.7 (1310 nm). The direction along the maximum photocurrent can be reconfigurable depending on the wavelengths. These results indicate that our designed alloyed SnSe0.75S0.25/MoTe2 vdWH has reconfigurable logic operation and broadband photodetection capabilities in 2D multifunctional integrated circuits.

5.
Sci Total Environ ; : 174715, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002592

ABSTRACT

Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.

6.
J Hazard Mater ; 476: 135081, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964036

ABSTRACT

Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.

7.
Plant Physiol Biochem ; 212: 108778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838570

ABSTRACT

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.


Subject(s)
Chlorophyll , Phenotype , Protochlorophyllide , Protoporphyrins , Chlorophyll/metabolism , Protochlorophyllide/metabolism , Protoporphyrins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Photosynthesis
8.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849569

ABSTRACT

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.


Subject(s)
Gene Expression Profiling , RNA-Seq , Humans , Animals , Mice , RNA-Seq/methods , Gene Expression Profiling/methods , Transcriptome , Sequence Analysis, RNA/methods , Molecular Sequence Annotation/methods
9.
Sci Rep ; 14(1): 14399, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909109

ABSTRACT

Aiming at the shortcomings of the BP neural network in practical applications, such as easy to fall into local extremum and slow convergence speed, we optimized the initial weights and thresholds of the BP neural network using the particle swarm optimization (PSO). Additionally, cloud computing service, web technology, cloud database and numerical simulation were integrated to construct an intelligent feedback analysis cloud program for underground engineering safety monitoring based on the PSO-BP algorithm. The program could conveniently, quickly, and intelligently carry out numerical analysis of underground engineering and dynamic feedback analysis of surrounding rock parameters. The program was applied to the cloud inversion analysis of the surrounding rock parameters for the underground powerhouse of the Shuangjiangkou Hydropower Station. The calculated displacement simulated with the back-analyzed parameters matches the measured displacement very well. The posterior variance evaluation shows that the posterior error ratio is 0.045 and the small error probability is 0.999. The evaluation results indicate that the intelligent feedback analysis cloud program has high accuracy and can be applied to engineering practice.

10.
Environ Sci Technol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900493

ABSTRACT

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.

11.
Nat Commun ; 15(1): 4664, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821968

ABSTRACT

Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr-1 m-2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.

12.
Front Pharmacol ; 15: 1344786, 2024.
Article in English | MEDLINE | ID: mdl-38783938

ABSTRACT

Introduction: Glycopyrrolate is commonly researched as a preoperative medication or in conjunction with cholinesterase inhibitors to counteract the lingering muscarinic effects of non-depolarizing muscarinic agents. However, studies have yielded inconsistent results regarding the superiority of glycopyrrolate over other anti-cholinergic drugs, such as atropine, particularly its effect on heart rate, blood pressure (BP), and glandular secretions. This study aimed to evaluate the differences in perioperative oral secretions, hemodynamics, and recovery quality with glycopyrrolate versus those with atropine before anesthesia induction in children undergoing tonsillectomy and adenoidectomy. Methods: In this prospective, single-center, randomized, double-blind, controlled trial, a total of 103 children were randomly assigned to group A (n = 51, glycopyrrolate 0.005 mg/kg) or B (n = 52, atropine 0.01 mg/kg). The follow-up anesthetic induction and maintenance protocols were the same in both groups. Vital signs, duration of surgery, extubation time, degree of wetness around the vocal cords during tracheal intubation, weight of oral secretions, and perioperative complications were recorded. Results: No significant differences were observed in the degree of wetness around the vocal cords during tracheal intubation, as well as in the weight of oral secretions, duration of surgery, or extubation time, between the two groups. The intraoperative and postoperative heart rates were lower in group A than in group B (110.18 ± 10.58 vs. 114.94 ± 11.14, p = 0.028; 96.96 ± 10.81 vs. 103.38 ± 10.09, p = 0.002). The differences observed in the intraoperative and preoperative heart rates were lower in group A than in group B (23.84 ± 9.62 vs. 29.65 ± 8.75, p = 0.002). The differences observed in the postoperative and preoperative heart rates were lower in group A than in group B (10.63 ± 9.97 vs. 18.09 ± 9.39, p = 0.000). Conclusion: Glycopyrrolate showed a smoother change in heart rate than atropine during and after tonsillectomy and adenoidectomy, with no effect on BP or recovery quality, and did not increase oral secretions. The findings indicate that glycopyrrolate can serve as an alternative to atropine to prevent secretions in anesthesia induction for tonsillectomy and adenoidectomy in children. Trial registration: This study was registered with the Chinese Clinical Trial Registry (Registration Number: ChiCTR2200063578; Date of Registration: 12/09/2022).

13.
Int J Heart Fail ; 6(2): 76-81, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38694934

ABSTRACT

Background and Objectives: Real-world clinical data, outside of clinical trials and expert centers, on adverse events related to the use of SyncCardia total artificial heart (TAH) remain limited. We aim to analyze adverse events related to the use of SynCardia TAH reported to the Food and Drug Administration (FDA)'s Manufacturers and User Defined Experience (MAUDE) database. Methods: We reviewed the FDA's MAUDE database for any adverse events involving the use of SynCardia TAH from 1/01/2012 to 9/30/2020. All the events were independently reviewed by three physicians. Results: A total of 1,512 adverse events were identified in 453 "injury and death" reports in the MAUDE database. The most common adverse events reported were infection (20.2%) and device malfunction (20.1%). These were followed by bleeding events (16.5%), respiratory failure (10.1%), cerebrovascular accident (CVA)/other neurological dysfunction (8.7%), renal dysfunction (7.5%), hepatic dysfunction (2.2%), thromboembolic events (1.8%), pericardial effusion (1.8%), and hemolysis (1%). Death was reported in 49.4% of all the reported cases (n=224/453). The most common cause of death was multiorgan failure (n=73, 32.6%), followed by CVA/other non-specific neurological dysfunction (n=44, 19.7%), sepsis (n=24, 10.7%), withdrawal of support (n=20, 8.9%), device malfunction (n=11, 4.9%), bleeding (n=7, 3.1%), respiratory failure (n=7, 3.1%), gastrointestinal disorder (n=6, 2.7%), and cardiomyopathy (n=3, 1.3%). Conclusions: Infection was the most common adverse event following the implantation of TAH. Most of the deaths reported were due to multiorgan failure. Early recognition and management of any possible adverse events after the TAH implantation are essential to improve the procedural outcome and patient survival.

14.
Antiviral Res ; 226: 105900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705200

ABSTRACT

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Subject(s)
Administration, Intranasal , Chitosan , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Nanospheres , Polylactic Acid-Polyglycolic Acid Copolymer , Viral Vaccines , Animals , Chitosan/chemistry , Chitosan/administration & dosage , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Mice , Nanospheres/chemistry , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Nucleic Acids/administration & dosage , Immunity, Mucosal , Drug Delivery Systems
15.
J Hepatocell Carcinoma ; 11: 879-900, 2024.
Article in English | MEDLINE | ID: mdl-38770169

ABSTRACT

Introduction: Immunogenic cell death (ICD) can enhance the potency of immunotherapy in cancer treatment. Nevertheless, it is ambiguous how ICD-related genes (ICDRGs) contribute to hepatocellular carcinoma (HCC). Methods: Single-cell RNA sequencing (scRNA-seq) data were used to distinguish malignant cells from normal cells in the HCC tumor microenvironment(TME). Bulk RNA sequencing data was employed to acquire the landscape of the 33 ICDRGs. Unsupervised clustering identified two ICD molecular subtypes. The cellular infiltration characteristics and biological behavior in different subtypes were analyzed by ssGSEA. Subsequently, differentially expressed genes (DEGs) between the two subtypes were determined, based on which patients were classified into three gene clusters. Then, the prognostic model was constructed by Lasso-Cox analysis. Finally, we investigated the expression of risk genes in cancer cell line encyclopedia (CCLE) and validated the function of NKX3-2 in vitro experiments. Results: ICD scores and ICDRGs expression in malignant cells were significantly lower than in normal cells by scRNA-seq analysis. ICD-high subtype was characterized by ICD-related gene overexpression and high levels of immune infiltration abundance and immune checkpoints; Three DEGs-related gene clusters were likewise strongly linked to stromal and immunological activation. In the ICD-related prognostic model consisting of NKX3-2, CHODL, MMP1, NR0B1, and CTSV, the low-risk group patients had a better endpoint and displayed increased susceptibility to immunotherapy and chemotherapeutic drugs like 5-Fluorouracil, afatinib, bortezomib, cediratinib, lapatinib, dasatinib, gefitinib and crizotinib. Moreover, NKX3-2 amplification in HCC samples has been verified by experiments, and its disruption suppressed the proliferation and invasion of tumor cells. Conclusion: Our study highlighted the potential of the ICDRGs risk score as a prognostic indicator to aid in the accurate diagnosis and immunotherapy sensitivity of HCC.

16.
J Ethnopharmacol ; 331: 118265, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38677579

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW: This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS: With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS: Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION: The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Medicine, Chinese Traditional , Prostatic Neoplasms , Humans , Male , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Docetaxel/pharmacology , Docetaxel/therapeutic use , Medicine, Chinese Traditional/methods , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
17.
Medicina (Kaunas) ; 60(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38674190

ABSTRACT

Sarcomas, particularly undifferentiated small round cell sarcomas of bone and soft tissue, pose significant diagnostic challenges due to their nonspecific morphology and the necessity for comprehensive molecular analyses. This paper discusses a rare case of round cell sarcoma exhibiting the EWSR1-CREM fusion, offering insights into the complexities of its diagnosis and management. The patient, a 15-year-old female with a history of Type 1 diabetes, presented with persistent right thigh tenderness and swelling. MRI revealed a large necrotic mass in the retroperitoneal region. Histological analysis showed a well-demarcated tumor with diverse cellular morphologies and distinct necrotic areas. Immunohistochemical (IHC) tests identified dot-like staining for Desmin and Vimentin but negative results for several markers, including Cytokeratin and CD45. Strong ALK positivity was noted. Next-generation sequencing with the Illumina TruSight™ Oncology 500 assay revealed the fusion gene EWSR1-CREM, along with benign and uncertain mutations in other genes. The tumor's morphology and immunoprofile, along with molecular findings, led to a diagnosis of round cell sarcoma with EWSR1-CREM fusion. This case adds to the spectrum of tumors associated with this fusion, often presenting diverse morphologies. The rarity of EWSR1-CREM fusion sarcomas poses a challenge in treatment, highlighted by the development of pulmonary metastases and disease progression after surgical excision in this patient despite the lack of an effective targeted therapy. In conclusion, this case emphasizes the need for a multidisciplinary diagnostic approach in complex sarcomas and highlights the importance of continued research on rare sarcomas, their genetic underpinnings, and potential therapeutic targets.


Subject(s)
Cyclic AMP Response Element Modulator , RNA-Binding Protein EWS , Sarcoma , Humans , Female , Sarcoma/genetics , Sarcoma/diagnosis , Sarcoma/surgery , RNA-Binding Protein EWS/genetics , Adolescent
18.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Article in English | MEDLINE | ID: mdl-38558788

ABSTRACT

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

19.
Res Sq ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38659817

ABSTRACT

Purpose: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results: KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.

20.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578721

ABSTRACT

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

SELECTION OF CITATIONS
SEARCH DETAIL
...