Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Inform ; 157: 104718, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39209086

ABSTRACT

Radiology report generation automates diagnostic narrative synthesis from medical imaging data. Current report generation methods primarily employ knowledge graphs for image enhancement, neglecting the interpretability and guiding function of the knowledge graphs themselves. Additionally, few approaches leverage the stable modal alignment information from multimodal pre-trained models to facilitate the generation of radiology reports. We propose the Terms-Guided Radiology Report Generation (TGR), a simple and practical model for generating reports guided primarily by anatomical terms. Specifically, we utilize a dual-stream visual feature extraction module comprised of detail extraction module and a frozen multimodal pre-trained model to separately extract visual detail features and semantic features. Furthermore, a Visual Enhancement Module (VEM) is proposed to further enrich the visual features, thereby facilitating the generation of a list of anatomical terms. We integrate anatomical terms with image features and proceed to engage contrastive learning with frozen text embeddings, utilizing the stable feature space from these embeddings to boost modal alignment capabilities further. Our model incorporates the capability for manual input, enabling it to generate a list of organs for specifically focused abnormal areas or to produce more accurate single-sentence descriptions based on selected anatomical terms. Comprehensive experiments demonstrate the effectiveness of our method in report generation tasks, our TGR-S model reduces training parameters by 38.9% while performing comparably to current state-of-the-art models, and our TGR-B model exceeds the best baseline models across multiple metrics.


Subject(s)
Natural Language Processing , Humans , Radiology/education , Radiology/methods , Algorithms , Machine Learning , Semantics , Radiology Information Systems , Diagnostic Imaging/methods
2.
Med Biol Eng Comput ; 62(2): 405-421, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37875739

ABSTRACT

Semi-supervised learning methods have been attracting much attention in medical image segmentation due to the lack of high-quality annotation. To cope with the noise problem of pseudo-label in semi-supervised medical image segmentation and the limitations of contrastive learning applications, we propose a semi-supervised medical image segmentation framework, HPFG, based on hybrid pseudo-label and feature-guiding, which consists of a hybrid pseudo-label strategy and two different feature-guiding modules. The hybrid pseudo-label strategy uses the CutMix operation and an auxiliary network to enable the labeled images to guide the unlabeled images to generate high-quality pseudo-label and reduce the impact of pseudo-label noise. In addition, a feature-guiding encoder module based on feature-level contrastive learning is designed to guide the encoder to mine useful local and global image features, thus effectively enhancing the feature extraction capability of the model. At the same time, a feature-guiding decoder module based on adaptive class-level contrastive learning is designed to guide the decoder in better extracting class information, achieving intra-class affinity and inter-class separation, and effectively alleviating the class imbalance problem in medical datasets. Extensive experimental results show that the segmentation performance of the HPFG framework proposed in this paper outperforms existing semi-supervised medical image segmentation methods on three public datasets: ACDC, LIDC, and ISIC. Code is available at https://github.com/fakerlove1/HPFG .


Subject(s)
Image Processing, Computer-Assisted , Supervised Machine Learning
3.
Sensors (Basel) ; 23(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37430726

ABSTRACT

Traditional Japanese orchards control the growth height of fruit trees for the convenience of farmers, which is unfavorable to the operation of medium- and large-sized machinery. A compact, safe, and stable spraying system could offer a solution for orchard automation. Due to the complex orchard environment, the dense tree canopy not only obstructs the GNSS signal but also has effects due to low light, which may impact the recognition of objects by ordinary RGB cameras. To overcome these disadvantages, this study selected LiDAR as a single sensor to achieve a prototype robot navigation system. In this study, density-based spatial clustering of applications with noise (DBSCAN) and K-means and random sample consensus (RANSAC) machine learning algorithms were used to plan the robot navigation path in a facilitated artificial-tree-based orchard system. Pure pursuit tracking and an incremental proportional-integral-derivative (PID) strategy were used to calculate the vehicle steering angle. In field tests on a concrete road, grass field, and a facilitated artificial-tree-based orchard, as indicated by the test data results for several formations of left turns and right turns separately, the position root mean square error (RMSE) of this vehicle was as follows: on the concrete road, the right turn was 12.0 cm and the left turn was 11.6 cm, on grass, the right turn was 12.6 cm and the left turn was 15.5 cm, and in the facilitated artificial-tree-based orchard, the right turn was 13.8 cm and the left turn was 11.4 cm. The vehicle was able to calculate the path in real time based on the position of the objects, operate safely, and complete the task of pesticide spraying.

4.
Med Biol Eng Comput ; 61(8): 1929-1946, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37243853

ABSTRACT

Accurate segmentation of lung nodules is the key to diagnosing the lesion type of lung nodule. The complex boundaries of lung nodules and the visual similarity to surrounding tissues make precise segmentation of lung nodules challenging. Traditional CNN based lung nodule segmentation models focus on extracting local features from neighboring pixels and ignore global contextual information, which is prone to incomplete segmentation of lung nodule boundaries. In the U-shaped encoder-decoder structure, variations of image resolution caused by up-sampling and down-sampling result in the loss of feature information, which reduces the reliability of output features. This paper proposes transformer pooling module and dual-attention feature reorganization module to effectively improve the above two defects. Transformer pooling module innovatively fuses the self-attention layer and pooling layer in the transformer, which compensates for the limitation of convolution operation, reduces the loss of feature information in the pooling process, and decreases the computational complexity of the Transformer significantly. Dual-attention feature reorganization module innovatively employs the dual-attention mechanism of channel and spatial to improve the sub-pixel convolution, minimizing the loss of feature information during up-sampling. In addition, two convolutional modules are proposed in this paper, which together with transformer pooling module form an encoder that can adequately extract local features and global dependencies. We use the fusion loss function and deep supervision strategy in the decoder to train the model. The proposed model has been extensively experimented and evaluated on the LIDC-IDRI dataset, the highest Dice Similarity Coefficient is 91.84 and the highest sensitivity is 92.66, indicating the model's comprehensive capability has surpassed state-of-the-art UTNet. The model proposed in this paper has superior segmentation performance for lung nodules and can provide a more in-depth assessment of lung nodules' shape, size, and other characteristics, which is of important clinical significance and application value to assist physicians in the early diagnosis of lung nodules.


Subject(s)
Clinical Relevance , Physicians , Humans , Reproducibility of Results , Electric Power Supplies , Lung/diagnostic imaging , Image Processing, Computer-Assisted
5.
Comput Biol Med ; 151(Pt B): 106330, 2022 12.
Article in English | MEDLINE | ID: mdl-36450216

ABSTRACT

Accurate segmentation of lung nodules is an important basis for the subsequent differentiation of benign and malignant pathological types, which is conducive to early detection of lung cancer. Due to the local feature extraction characteristics of convolution and the limited receptive field of continuous down-sampling, the existing deep convolutional neural networks (CNN) for lung nodules segmentation cause the loss of information of lesion boundaries and locations. To address this issue, a dual-path lung nodules segmentation model based on boundary enhancement and hybrid transformer (DPBET) is proposed in this paper. The model consists of a global path, an edge path, and a feature aggregation module. In the global path, a de-redundant transformer module with explicit guidance is proposed, called Cascade-Axial-Prune Transformer (CAP-Trans). It is combined with CNN to form a hybrid architecture to generate a global representation of the target lesion. In the edge path, an edge detection operator is introduced to construct a lung nodule edge enhancement dataset, which improves the dataset utilization while providing more prior knowledge of the target lesion boundar. In addition, the Down-Attention Sample (DASample) as a basic encoding block is designed to effectively perceive local features of different ranges and scales in the down-sampling process of lung nodule feature extraction. Finally, a feature aggregation module is designed to fuse the outputs of the two paths to get the final segmentation result. Our DPBET can delineate the boundaries of various types of pulmonary nodules, with an average DSC of 89.86% and an average Sensitivity of 90.50% on the public dataset LIDC-IDRI. Compared with the state-of-the-art approaches, a substantial improvement has been achieved. The experimental results demonstrate that DPBET can use edge enhancement to promote the global-edge consistency relationship, and the network architecture is effective in lung nodule segmentation.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Lung Neoplasms/diagnosis , Lung
6.
Sensors (Basel) ; 22(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35271214

ABSTRACT

In an orchard automation process, a current challenge is to recognize natural landmarks and tree trunks to localize intelligent robots. To overcome low-light conditions and global navigation satellite system (GNSS) signal interruptions under a dense canopy, a thermal camera may be used to recognize tree trunks using a deep learning system. Therefore, the objective of this study was to use a thermal camera to detect tree trunks at different times of the day under low-light conditions using deep learning to allow robots to navigate. Thermal images were collected from the dense canopies of two types of orchards (conventional and joint training systems) under high-light (12-2 PM), low-light (5-6 PM), and no-light (7-8 PM) conditions in August and September 2021 (summertime) in Japan. The detection accuracy for a tree trunk was confirmed by the thermal camera, which observed an average error of 0.16 m for 5 m, 0.24 m for 15 m, and 0.3 m for 20 m distances under high-, low-, and no-light conditions, respectively, in different orientations of the thermal camera. Thermal imagery datasets were augmented to train, validate, and test using the Faster R-CNN deep learning model to detect tree trunks. A total of 12,876 images were used to train the model, 2318 images were used to validate the training process, and 1288 images were used to test the model. The mAP of the model was 0.8529 for validation and 0.8378 for the testing process. The average object detection time was 83 ms for images and 90 ms for videos with the thermal camera set at 11 FPS. The model was compared with the YOLO v3 with same number of datasets and training conditions. In the comparisons, Faster R-CNN achieved a higher accuracy than YOLO v3 in tree truck detection using the thermal camera. Therefore, the results showed that Faster R-CNN can be used to recognize objects using thermal images to enable robot navigation in orchards under different lighting conditions.


Subject(s)
Neural Networks, Computer , Trees , Japan
7.
Sensors (Basel) ; 18(4)2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29596336

ABSTRACT

Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

8.
Eng Life Sci ; 18(9): 626-634, 2018 Sep.
Article in English | MEDLINE | ID: mdl-32624942

ABSTRACT

The aim of this study was to improve l-lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy-ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l-lactic acid producers, a scale-down from shake flask to microtiter plate was developed. The results showed that 24-well U-bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale-down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l-lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed-batch fermentation, the A69 mutant can accumulate 114.2 g/L l-lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain lactic acid-overproducing strain.

SELECTION OF CITATIONS
SEARCH DETAIL