Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 14(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38535284

ABSTRACT

The operation of coal-fired power plants generates a large amount of wastewater. With the issuance of increasingly strict drainage standards, the cost of wastewater treatment is increasing, and the need to reduce the cost of wastewater treatment is becoming increasingly urgent. Thus, based on the principles of reverse osmosis (RO) and mechanical vapor recompression (MVR) in wastewater treatment, the operational optimization of an RO-MVR joint system was studied in this work with the consideration of reducing the operating costs of wastewater treatment under given operational conditions. Firstly, based on the basic principles of RO and MVR, corresponding mechanism models were established and their accuracy was verified. Then, an economic model of the RO-MVR joint system was established, with the goal of minimizing the water production unit price and daily operating costs of the joint system for optimization analysis. Finally, we analyzed the cost and water production performance of the RO-MVR joint system before and after optimization under different operating conditions. The results show that this optimization based on the RO-MVR joint system will reduce the unit price of water production to 3.16 CNY/m3, with the daily operating costs being decreased by 22% compared to before optimization. This result helps to reduce the cost of zero-discharge wastewater treatment in coal-fired power plants.

2.
Entropy (Basel) ; 26(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38248148

ABSTRACT

As energy conversion systems continue to grow in complexity, pneumatic control valves may exhibit unexpected anomalies or trigger system shutdowns, leading to a decrease in system reliability. Consequently, the analysis of time-domain signals and the utilization of artificial intelligence, including deep learning methods, have emerged as pivotal approaches for addressing these challenges. Although deep learning is widely used for pneumatic valve fault diagnosis, the success of most deep learning methods depends on a large amount of labeled training data, which is often difficult to obtain. To address this problem, a novel fault diagnosis method based on the attention-weighted relation network (AWRN) is proposed to achieve fault detection and classification with small sample data. In the proposed method, fault diagnosis is performed through the relation network in few-shot learning, and in order to enhance the representativeness of feature extraction, the attention-weighted mechanism is introduced into the relation network. Finally, in order to verify the effectiveness of the method, a DA valve fault dataset is constructed, and experimental validation is performed on this dataset and another benchmark PU rolling bearing fault dataset. The results show that the accuracy of the network on DA is 99.15%, and the average accuracy on PU is 98.37%. Compared with the state-of-the-art diagnosis methods, the proposed method achieves higher accuracy while significantly reducing the amount of training data.

3.
Membranes (Basel) ; 12(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736252

ABSTRACT

Based on the mathematical modeling and operational optimization studies of reverse osmosis (RO) and multistage flash (MSF) desalination, the structural optimization of the hybrid process was specially studied in this work with the consideration of reducing comprehensive expenses under given operational conditions. Firstly, according to the process mechanism and flowchart of the RO and MSF seawater desalination technologies, seven hybrid structures with different feed conditions were designed, and their connection equations were established for numerical calculation. Then, in order to evaluate the economic performance of the hybrid systems with different structures, the hourly average operational cost equations of RO and MSF processes were established and formulated as the comprehensive evaluation indicators. Next, with a given water production requirement, simulation calculations of the hybrid system with seven different structures were performed. The results show that the hybrid system with the fourth structure has the lowest operational cost of 4.6834 CNY/m3, and at the same time it has the lowest blowdown. However, if we take GOR or production water temperature as the target, the optimal structure of the hybrid system is the fifth or the seventh option. The obtained results are helpful in structural optimization of the hybrid system with aspects of operational cost reduction, maximum GOR, or minimizing the wastewater discharge.

4.
Membranes (Basel) ; 12(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35629804

ABSTRACT

Focusing on the problems of opaqueness and high energy consumption in coal-fired power plant wastewater recycling processes, this paper studies the simulation and operational optimization of coal-fired power plant wastewater treatment by taking a coal-fired power plant system in Inner Mongolia as an example. Firstly, based on the solution-diffusion theory, pressure drop, and osmotic concentration polarization, a mechanistic model equation for coal-fired power plant wastewater treatment is developed. Secondly, the equation fitness and equation parameters are calibrated to obtain an accurate model. Thirdly, the system is simulated and analyzed so as to obtain the influence and change trajectories of different feed flowrates, temperatures, pressures, and concentrations on various aspects of the system's performance, such as water recovery rate, salt rejection rate, and so on. Finally, in order to reduce the operating cost of the system, an optimization analysis is carried out, with the lowest specific energy consumption and average daily operating cost as optimization goals, and the performance changes of the system before and after optimization under three different working conditions are compared. The results show that adopting the given optimal strategy can significantly reduce the system's operational cost. This research is helpful for the digitization and low-carbon operation of coal-fired power plant wastewater treatment systems.

5.
ScientificWorldJournal ; 2014: 584068, 2014.
Article in English | MEDLINE | ID: mdl-24701180

ABSTRACT

A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality.


Subject(s)
Algorithms , Salinity , Sodium Chloride/isolation & purification , Water Purification/methods , Models, Theoretical , Osmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...