Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 97: 103243, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38954941

ABSTRACT

Instance segmentation of biological cells is important in medical image analysis for identifying and segmenting individual cells, and quantitative measurement of subcellular structures requires further cell-level subcellular part segmentation. Subcellular structure measurements are critical for cell phenotyping and quality analysis. For these purposes, instance-aware part segmentation network is first introduced to distinguish individual cells and segment subcellular structures for each detected cell. This approach is demonstrated on human sperm cells since the World Health Organization has established quantitative standards for sperm quality assessment. Specifically, a novel Cell Parsing Net (CP-Net) is proposed for accurate instance-level cell parsing. An attention-based feature fusion module is designed to alleviate contour misalignments for cells with an irregular shape by using instance masks as spatial cues instead of as strict constraints to differentiate various instances. A coarse-to-fine segmentation module is developed to effectively segment tiny subcellular structures within a cell through hierarchical segmentation from whole to part instead of directly segmenting each cell part. Moreover, a sperm parsing dataset is built including 320 annotated sperm images with five semantic subcellular part labels. Extensive experiments on the collected dataset demonstrate that the proposed CP-Net outperforms state-of-the-art instance-aware part segmentation networks.

2.
Reprod Biol Endocrinol ; 22(1): 59, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778327

ABSTRACT

BACKGROUND: Deep learning has been increasingly investigated for assisting clinical in vitro fertilization (IVF). The first technical step in many tasks is to visually detect and locate sperm, oocytes, and embryos in images. For clinical deployment of such deep learning models, different clinics use different image acquisition hardware and different sample preprocessing protocols, raising the concern over whether the reported accuracy of a deep learning model by one clinic could be reproduced in another clinic. Here we aim to investigate the effect of each imaging factor on the generalizability of object detection models, using sperm analysis as a pilot example. METHODS: Ablation studies were performed using state-of-the-art models for detecting human sperm to quantitatively assess how model precision (false-positive detection) and recall (missed detection) were affected by imaging magnification, imaging mode, and sample preprocessing protocols. The results led to the hypothesis that the richness of image acquisition conditions in a training dataset deterministically affects model generalizability. The hypothesis was tested by first enriching the training dataset with a wide range of imaging conditions, then validated through internal blind tests on new samples and external multi-center clinical validations. RESULTS: Ablation experiments revealed that removing subsets of data from the training dataset significantly reduced model precision. Removing raw sample images from the training dataset caused the largest drop in model precision, whereas removing 20x images caused the largest drop in model recall. by incorporating different imaging and sample preprocessing conditions into a rich training dataset, the model achieved an intraclass correlation coefficient (ICC) of 0.97 (95% CI: 0.94-0.99) for precision, and an ICC of 0.97 (95% CI: 0.93-0.99) for recall. Multi-center clinical validation showed no significant differences in model precision or recall across different clinics and applications. CONCLUSIONS: The results validated the hypothesis that the richness of data in the training dataset is a key factor impacting model generalizability. These findings highlight the importance of diversity in a training dataset for model evaluation and suggest that future deep learning models in andrology and reproductive medicine should incorporate comprehensive feature sets for enhanced generalizability across clinics.


Subject(s)
Deep Learning , Spermatozoa , Humans , Pilot Projects , Male , Spermatozoa/physiology , Fertilization in Vitro/methods , Image Processing, Computer-Assisted/methods , Semen Analysis/methods
3.
PLoS One ; 19(2): e0291284, 2024.
Article in English | MEDLINE | ID: mdl-38363788

ABSTRACT

The impact of environmental uncertainty on locomotor adaptation remains unclear. Environmental uncertainty could either aid locomotor adaptation by prompting protective control strategies that stabilize movements to assist learning or impede adaptation by reducing error sensitivity and fostering hesitance to pursue corrective movements. To explore this, we investigated participants' adaptation to a consistent force field after experiencing environmental uncertainty in the form of unpredictable balance perturbations. We compared the performance of this group (Perturbation) to the adaptive performance of a group that did not experience any unpredictable perturbations (Non-Perturbation). Perturbations were delivered using a cable-driven robotic device applying lateral forces to the pelvis. We assessed whole-body center of mass (COM) trajectory (COM signed deviation), anticipatory postural adjustments (COM lateral offset), and first step width. The Perturbation group exhibited larger disruptions in COM trajectory (greater COM signed deviations) than the Non-Perturbation group when first walking in the force field. While the COM signed deviations of both groups decreased towards baseline values, only the Non-Perturbation group returned to baseline levels. The Perturbation groups COM signed deviations remained higher, indicating they failed to fully adapt to the force field before the end. The Perturbation group also did not adapt their COM lateral offset to counter the predictable effects of the force field as the Non-Perturbation group did, and their first step width increased more slowly. Our findings suggest that exposure to unpredictable perturbations impeded future sensorimotor adaptations to consistent perturbations.


Subject(s)
Postural Balance , Walking , Humans , Uncertainty , Movement , Learning , Biomechanical Phenomena , Adaptation, Physiological , Gait
SELECTION OF CITATIONS
SEARCH DETAIL
...