Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632041

ABSTRACT

Due to the ever-increasing industrial activity, humans and the environment suffer from deteriorating air quality, making the long-term monitoring of air particle indicators essential. The advances in unmanned aerial vehicles (UAVs) offer the potential to utilize UAVs for various forms of monitoring, of which air quality data acquisition is one. Nevertheless, most current UAV-based air monitoring suffers from a low payload, short endurance, and limited range, as they are primarily dependent on rotary aerial vehicles. In contrast, a fixed-wing UAV may be a better alternative. Additionally, one of the most critical modules for 3D profiling of a UAV system is path planning, as it directly impacts the final results of the spatial coverage and temporal efficiency. Therefore, this work focused on developing 3D coverage path planning based upon current commercial ground control software, where the method mainly depends on the Boustrophedon and Dubins paths. Furthermore, a user interface was also designed for easy accessibility, which provides a generalized tool module that links up the proposed algorithm, the ground control software, and the flight controller. Simulations were conducted to assess the proposed methods. The result showed that the proposed methods outperformed the existing coverage paths generated by ground control software, as it showed a better coverage rate with a sampling density of 50 m.


Subject(s)
Air Pollution , Remote Sensing Technology , Algorithms , Humans , Remote Sensing Technology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...