Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(7): e0159401, 2016.
Article in English | MEDLINE | ID: mdl-27442128

ABSTRACT

Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.


Subject(s)
Antibodies/metabolism , Cell Separation/methods , DNA/analysis , Forensic Medicine/methods , Immunomagnetic Separation/methods , Microspheres , Spermatozoa/cytology , DNA/genetics , Deoxyribonucleases/metabolism , Female , Humans , Male , Microsatellite Repeats/genetics , Sperm Head
2.
Forensic Sci Int Genet ; 12: 136-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24997318

ABSTRACT

Short tandem repeat (STR) genotyping methods are widely used for human identity testing applications, including forensic DNA analysis. Samples of DNA containing the length-variant STR alleles are typically separated and genotyped by comparison to an allelic ladder. Here, we describe a newly devised library of cloned STR alleles. The library covers alleles X and Y for the sex-determining locus Amelogenin and 259 other alleles for 22 autosomal STR loci (TPOX, D3S1358, FGA, D5S818, CSF1PO, D7S820, D8S1179, TH01, vWA, D13S317, D16S539, D18S51, D21S11, D2S1338, D6S1043, D12S391, Penta E, D19S433, D11S4463, D17S974, D3S4529 and D12ATA63). New primers were designed for all these loci to construct recombinant plasmids so that the library retains core repeat elements of STR as well as 5'- and 3'-flanking sequences of ∼500 base pairs. Since amplicons of commercial STR genotyping kits and systems developed in laboratories are usually distributed from 50 to <500 base pairs, this library could provide universal templates for allelic ladder preparation. We prepared three different sets of allelic ladders for this locus TH01 and an updated version of an allelic ladder for the DNATyper(®)19 multiplex system using these plasmids to confirm the suitability of the library as a good source for allelic ladder preparation. Importantly, the authenticity of each construct was confirmed by bidirectional nucleotide sequencing and we report the repeat structures of the 259 STR alleles. The sequencing results showed all repeat structures we obtained for TPOX, CSF1PO, D7S820, TH01, D16S539, D18S51 and Penta E were the same as reported. However, we identified 102 unreported repeat structures from the other 15 STR loci, supplementing our current knowledge of repeat structures and leading to further understanding of these widely used loci.


Subject(s)
Alleles , Microsatellite Repeats , Base Sequence , Cloning, Molecular , DNA Primers , Forensic Genetics , Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...