Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(29): 10389-10398, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35819051

ABSTRACT

Fullerene-derived carbons have been demonstrated as effective electrode materials for electrocatalytic reactions. The heteroatoms in the carbon matrix are essential to enhance their electrocatalytic performance but are still challenging for effective doping strategies and understanding their synergistic effect. Herein, we regulate the phosphorus/nitrogen (P/N) doping in the carbon structure based on the control mixing of pyritic acid (PA) with the assembled diamine-C60 hollow spheres (N@FHS). After pyrolysis, the carbon spheres are shown to have a homogenous distribution of N and P (NP@CHS). The structural and molecular analysis reveals that the doping of P may facilitate the formation of graphitic N in the carbon framework. When used as electrocatalysts for the oxygen reduction reaction (ORR), NP@CHSs exhibit superior oxygen reduction reaction (ORR) performance in contrast to those of fullerene-derived carbon with single N doping and the commercial Pt/C (20 wt%) catalyst. Density functional theory (DFT) studies indicate that P/N-doping promotes the charge transfer in the carbon structure owing to its strong electronegativity. The enhanced ORR activity should be mainly due to the P- and N-coordinated neighboring C sites with the defective fullerene pentagon ring.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 1): 120554, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34749111

ABSTRACT

Mitochondria, as vital energy supplying organelles, play important roles in cellular metabolism, which are closely related with mitochondrial pH (∼8.0). In this work, a novel multimodal fluorescent probe was employed for ratiometric and colorimetric detection of pH. The probe is designed to work by controlling benzothiazole phenol-hemicyanine system as the interaction site and hemicyanine connected by conjugate bonds as the mitochondrial targeting, which also could make the fluorescence of probe red-shifted. This system results in a perfect ratiometric fluorescent response, whose emission changed from red to blue under pH 2.0-10.0, having a broad linear range (pH = 3.0-10.0). And the marked colour change (light yellow to deep purple via naked eye under pH 2.0-11.0) could be used to construct the test strip colorimetry and smartphone APP detection method, realizing the fast, portable, and accurate detection of pH in vitro and environment. Besides, the probe owns the characteristics of easy loading, high selectivity and staining ability of mitochondria, and low cytotoxicity, thereby allowing imaging of pH values and real-time monitor the subcellular mitochondria pH changes caused by drugs in living cells. It thus could be used to monitor the organ-specific dynamics related to transitions between pathological and physiological states.


Subject(s)
Colorimetry , Fluorescent Dyes , Hydrogen-Ion Concentration , Mitochondria , Spectrometry, Fluorescence
3.
ACS Nano ; 13(12): 14005-14012, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31794176

ABSTRACT

We report the production of fullerene microtubes (FMTs), having solid cores bisecting their tubular cavities, from solutions of mixtures of fullerene C60 and C70 and have demonstrated the structural transformation of FMTs to fullerene microhorns (FMHs) upon their exposure to alcohol/mesitylene mixtures at 25 °C. The conically shaped microhorns have hollow interiors and exhibit preferential recognition of silica particles over fullerene C70, polystyrene (PS) latex, PS hydroxylate, or PS carboxylate particles of similar dimensions due to strong electrostatic interactions between negatively charged FMHs and positively charged silica particles.

4.
J Colloid Interface Sci ; 458: 293-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26245718

ABSTRACT

Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications.


Subject(s)
Adipose Tissue , Dexamethasone/pharmacology , Drug Delivery Systems , Hyaluronic Acid/chemistry , Magnetics , Nanospheres/chemistry , Tissue Engineering/methods , Water/chemistry , Cells, Cultured , Humans , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...