Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Cardiol ; 78(6): 586-597, 2021 12.
Article in English | MEDLINE | ID: mdl-34489160

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is a common heart disease with high incidence and mortality. Myocardial ischemia is the main type of CAD, which negatively affects health worldwide. The aim of the present study was to investigate the function and mechanism of myocardial infarction-associated transcript (MIAT) in myocardial ischemia. METHODS: Human cardiomyocytes (HCM) were treated with oxygen-glucose deprivation (OGD) to set the in vitro model and mouse myocardial ischemia/reperfusion (I/R) was set for in vivo model. Cell viability and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, and immunofluorescence analysis. Inflammatory cytokines levels were detected by enzyme-linked immunosorbent assay. Gene and protein expressions were identified by quantitative real time-polymerase chain reaction or Western blotting. The interaction of MIAT, miR-181a-5p, and janus kinase 2 (JAK2) was identified by dual-luciferase report assay. Mouse heart tissues histopathological condition were observed by hematoxylin and eosin assays. RESULTS: Expression of MIAT and JAK2 were increased in OGD-treated HCM and mice of I/R model group, and miR-181a-5p was decreased. MIAT silencing could reverse the OGD treatment induced cell proliferation inhibition, cleaved caspase-3 and Bcl2-associated X (Bax) levels increased, while those of B-cell lymphoma-2 (Bcl-2) and mitochondria's cyt-C decreased. Besides, MIAT knockdown attenuated the OGD-induced increase of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 levels. Moreover, MIAT targeted miR-181a-5p to enhance the expression of JAK2 and signal Transducer and Activator of Transcription 3 (STAT3), and miR-181a-5p overexpression promoted proliferation, whereas it inhibited apoptosis in OGD-induced cardiomyocytes. Furthermore, the regulatory effects of MIAT knockdown in cell proliferation, apoptosis, and inflammatory injury was reversed by inhibition of miR-181a-5p or overexpression of JAK2 in OGD-treated HCM. Knockdown of MIAT reduced myocardial injury caused by I/R treatment in vivo. CONCLUSION: MIAT knockdown inhibited apoptosis and inflammation by regulating JAK2/STAT3 signaling pathway via targeting miR-181a-5p in myocardial ischemia model. MIAT can be a possible therapeutic target for controlling the progression of myocardial ischemia.


Subject(s)
MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Animals , Apoptosis , Glucose , Humans , Janus Kinase 2/metabolism , Mice , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Oxygen , RNA, Long Noncoding/genetics , STAT3 Transcription Factor/metabolism
2.
Lipids ; 56(3): 301-311, 2021 05.
Article in English | MEDLINE | ID: mdl-33663010

ABSTRACT

MicroRNA-328 (miR-328) was reported to protect against atherosclerosis, but its role in foam cell formation remains unknown. The aim of this study was to investigate the effect of miR-328-5p on macrophage lipid accumulation and the underlying mechanisms. The results showed that miR-328-5p expression was robustly decreased in oxidized low-density lipoprotein (ox-LDL)-treated macrophages. Treatment of human acute monocytic leukemia cel (THP-1) macrophage-derived foam cells with a miR-328-5p mimic markedly increased [3 H]-cholesterol efflux, inhibited lipid droplet accumulation, and decreased intracellular total cholesterol (TC), free cholesterol (FC) and cholesteryl ester (CE) contents. Upregulation of miR-328-5p also reduced the expression of histone deacetylase 3 (HDAC3) but increased the levels of ATP-binding cassette transporter A1 (ABCA1) in THP-1 macrophage-derived foam cells. Mechanistically, miR-328-5p inhibited HDAC3 expression by directly targeting its 3'UTR, thereby promoting ABCA1 expression and the subsequent cholesterol efflux. Furthermore, miR-328-5p mimic treatment did not affect the uptake of Dil-ox-LDL or the expression of scavenger receptor-A (SR-A), thrombospondin receptor (CD36) and ABCG1. Taken together, these findings suggest that miR-328-5p alleviates macrophage lipid accumulation through the HDAC3/ABCA1 pathway.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Cholesterol/metabolism , Histone Deacetylases/metabolism , Macrophages/cytology , MicroRNAs/genetics , 3' Untranslated Regions , Cholesterol Esters/metabolism , Chromatography, High Pressure Liquid , Foam Cells/cytology , Foam Cells/drug effects , Foam Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Signal Transduction , THP-1 Cells
3.
Life Sci ; 239: 116935, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31610203

ABSTRACT

BACKGROUND: The protective effects of gastrodin and rhynchophylline in ischaemic injury have been reported. However, the underlying mechanism and the effect of the combination of these two drugs in ischaemic injury remain unclear. Herein, we aimed to explore the effects of the combination of gastrodin and rhynchophylline on ischaemia-induced inflammasome activation as well as the underlying mechanism. METHODS: Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD)-treated BV2 cells were used as in vivo and in vitro models of ischaemia, respectively. Cerebral injury was determined by TTC staining, H&E staining and neurological deficit scores. The effects of the combination of gastrodin and rhynchophylline on inflammasome activation were measured by the MTT assay, Western blotting and ELISA. The expression of miR-21-5p and miR-331-5p was measured by qRT-PCR. The potential binding between miR-21-5p and TXNIP and between miR-331-5p and TRAF6 was analysed with Targetscan and a luciferase assay. RESULTS: MCAO-induced tissue infarction, neurological deficits, inflammasome activation, and downregulation of miR-21-5p and miR-331-5p were all mitigated by the combination of gastrodin and rhynchophylline. In OGD-treated BV2 cells, the combination of gastrodin and rhynchophylline also alleviated inflammasome activation and restored the expression of miR-21-5p and miR-331-5p. TXNIP and TRAF6 were confirmed to be targets of miR-21-5p and miR-331-5p, respectively. Moreover, OGD-induced inflammasome activation was attenuated by the overexpression of either miR-331-5p or miR-21-5p and was further attenuated by the overexpression of both. Finally, we demonstrated that a miR-21-5p inhibitor and/or a miR-331-5p inhibitor counteracted the protective effects of gastrodin and/or rhynchophylline. CONCLUSIONS: The combination of gastrodin and rhynchophylline exerts neuroprotective effects by preventing ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p.


Subject(s)
Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , MicroRNAs/metabolism , Oxindoles/pharmacology , Animals , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Inflammasomes/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neuroprotective Agents , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL