Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 41(1): 143-154, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35730797

ABSTRACT

Domestic biodegradable wastes (DBW) pose a threat to environmental quality and human health. Bioconversion via black soldier fly larvae (BSFL; Hermitia illucens L.) is an expedient way for converting 'waste to resource' (insect protein and biofertilizer). Although researches abounded in laboratory-reared experiments and bioconversion mechanisms were pertinent, the void of data from actual and full-scale operation restricts the intensification of BSFL technology and its global adoption. Hence, a full-scale BSFL bioconversion system lasting 4 years in Hangzhou (China) was investigated, and the feasibility and efficiency of 15 tonnes of DBW per day were studied. Through continuous technical optimization, the average production of fresh larvae was increased from 8.5% in 2017 to 15.3% in 2020, along with bioconversion rate of final vermicompost decreased from 35.4% to 14.5%. The total biomass reduction rate in 2020 was 68.7 ± 17.4 kg/(m3 d), equivalent to 0.735 ± 0.215 kg/(kg d) in the form of fresh larvae. Crude fat in fresh larvae accounted for 13.4%, and crude protein accounted for 16.2% in which the determined amino acid profile bore a strong resemblance to fish meal only except histidine and tyrosine. Its economic benefits proved the feasibility of this technology, and the profit reached up to 35.9 US$ per tonne of DBW in 2019. In conclusion, BSFL bioconversion system under current 'insect-farm' operation was a promising solution for DBW treatment with value-added waste recycling.


Subject(s)
Diptera , Animals , Humans , Larva , Biomass , China , Conservation of Natural Resources
2.
Appl Microbiol Biotechnol ; 106(11): 4315-4328, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35595931

ABSTRACT

Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste recycling, yet little is known about how BSFL vermicompost affects soil health in terms of element availability and related microbial response. In this work, a field soil experiment for luffa (Luffa cylindrica (L.) Roem.) growth was conducted to examine the impacts of BSFL vermicompost (BV, 9750 kg ha-1, equal to total N input rate of chemically treated soil (CK)) on soil biochemistry and bacterial communities. Relative to CK, application of BV significantly increased total soil carbon by 149% and enhanced catalase and urease activity by 59.2% and 16.2%, respectively. BV increased the degree of aromaticity and humification in dissolved organic matter (DOM) in soil by 28.6% and 27.3%, respectively, compared to CK treatment. Among bacterial communities in soil, Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were the phyla that showed the most substantial alteration in response to BV. Redundancy analysis further revealed that the bacterial community structure was affected by DOM and total phosphorus. Functional analyses indicated that BV enhanced xylanolysis (55.4%) and nitrogen fixation (46.3%), but inhibited nitrification (59.8%). BSFL vermicompost input might effectively prevent the harm of soil borne pathogens (e.g., wilt). Moreover, these function groups strongly correlated with Clostridiales, Actinomycetales, and Nitrospirales. Our study reveals that BSFL vermicompost promoted soil nutrient availability, microbial community succession, and biochemical function optimization, which is conducive to the popularization and application of BSFL vermicompost in the field of soil health. KEY POINTS: • Vermicompost enhanced catalase and urease levels while increased DOM aromaticity. • Vermicompost enriched Bacteroidetes and Firmicutes and improved soil health.


Subject(s)
Diptera , Refuse Disposal , Animals , Bacteria , Catalase , Diptera/microbiology , Food , Larva/microbiology , Soil , Urease
3.
Waste Manag ; 142: 55-64, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35176599

ABSTRACT

Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste treatment. However, the separated residues still do not meet criteria for use as land application biofertilizers. In this work, we investigated a full-scale BSFL bioconversion project to explore features of dissolved organic matter (DOM) and its associated responses of bacterial community succession in residue during secondary composting. Data showed that the concentrations of total nitrogen and ammonium nitrogen decreased by 11.8% and 22.6% during the secondary composting, respectively, while the nitrate nitrogen concentration increased 18.7 times. The DOM concentration decreased by 69.1%, in which protein-like, alcohol-phenol, and biodegradable aliphatic substances were metabolized by bacteria during the thermophilic phase together with the accumulation of humus-like substances, resulting in an increase in the relative concentration of aromatic compounds. The structure of the bacterial community varied at different stages of the bioprocess, in which Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes were the dominant bacterial phyla. Lysinibacillus, Pusillimonas, and Caldicoprobacter were found to be key contributors in the degradation and formation of DOM. The DOM concentration (33.4%) and temperature (17.7%) were the prime environmental factors that promoted succession of the bacterial community. Through bacterial metabolism, the structural stability of DOM components was improved during the composting process, and the degrees of humification and aromaticity were also increased. This study depicted the dynamic features of DOM and the associated bacterial community succession in residue during secondary composting, which is conducive with the reuse of BSFL residue as biofertilizer for agriculture.


Subject(s)
Composting , Diptera , Refuse Disposal , Animals , Bacteria , Dissolved Organic Matter , Food , Larva
4.
Front Hum Neurosci ; 16: 1068165, 2022.
Article in English | MEDLINE | ID: mdl-36618992

ABSTRACT

Introduction: Electroencephalogram (EEG)-based motor imagery (MI) classification is an important aspect in brain-computer interfaces (BCIs), which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, due to the small number of training samples of MI electroencephalogram (MI-EEG) for a single subject and the great individual differences of MI-EEG among different subjects, the generalization and accuracy of the model on the specific MI task may be poor. Methods: To solve these problems, an adaptive cross-subject transfer learning algorithm is proposed, which is based on kernel mean matching (KMM) and transfer learning adaptive boosting (TrAdaBoost) method. First, the common spatial pattern (CSP) is used to extract the spatial features. Then, in order to make the feature distribution more similar among different subjects, the KMM algorithm is used to compute a sample weight matrix for aligning the mean between source and target domains and reducing distribution differences among different subjects. Finally, the sample weight matrix from KMM is used as the initialization weight of TrAdaBoost, and then TrAdaBoost is used to adaptively select source domain samples that are closer to the target task distribution to assist in building a classification model. Results: In order to verify the effectiveness and feasibility of the proposed method, the algorithm is applied to BCI Competition IV datasets and in-house datasets. The results show that the average classification accuracy of the proposed method on the public datasets is 89.1%, and the average classification accuracy on the in-house datasets is 80.4%. Discussion: Compared with the existing methods, the proposed method effectively improves the classification accuracy of MI-EEG signals. At the same time, this paper also applies the proposed algorithm to the in-house dataset, the results verify the effectiveness of the algorithm again, and the results of this study have certain clinical guiding significance for brain rehabilitation.

5.
Sci Total Environ ; 750: 141656, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32858299

ABSTRACT

This study provided a systematic analysis on material flow and environmental impacts of a food waste (FW) bioconversion plant using black soldier fly larvae (BSFL), with a daily capacity of 15 tons of FW (wet weight). Food waste feed (FWF) used for BSFL bioconversion consisted of 80% FW (collected from households, restaurants, and canteens) and 20% rice hull powder. Material flow analysis conducted on a dry weight basis showed that 6% of FWF was transformed into BSF pre-pupae, 51% was stored in matured compost, and 43% was emitted to the air. Emissions of high environmental concern such as methane, nitrous oxide and ammonia (NH3) were sampled and quantified by laboratory analysis. The life cycle assessment revealed that the overall impact was 17.36 kg CO2-eq/t FW for global warming potential, 5.54 kg SO2-eq/t FW for acidification, 24.05 mol N-eq/t FW for terrestrial eutrophication, 0.54 kg N-eq NH3/t FW for marine eutrophication, and 0.18 kg PM2.5-eq/t FW of particulate matter up to 2.5 µm diameter. Moreover, emissions from post-composting, energy consumptions of drying and chemical fertilizer substitution ratio were detected by contribution analysis as the main contributors to those impacts. Finally, sensitivity analysis indicated that the substitution ratio of mineral fertilizer and protein feed as well as energy consumption were the most influential parameters, therefore control of the post-composting process of residual material should be closely monitored because it was responsible for significant environmental load caused by N-related emissions.


Subject(s)
Composting , Diptera , Refuse Disposal , Simuliidae , Animals , Food , Larva
7.
Microb Biotechnol ; 12(3): 528-543, 2019 05.
Article in English | MEDLINE | ID: mdl-30884189

ABSTRACT

Vermicomposting using black soldier fly (BSF) larvae (Hermetia illucens) has gradually become a promising biotechnology for waste management, but knowledge about the larvae gut microbiome is sparse. In this study, 16S rRNA sequencing, SourceTracker, and network analysis were leveraged to decipher the influence of larvae gut microbiome on food waste (FW) biodegradation. The microbial community structure of BSF vermicompost (BC) changed greatly after larvae inoculation, with a peak colonization traceable to gut bacteria of 66.0%. The relative abundance of 11 out of 21 metabolic function groups in BC were significantly higher than that in natural composting (NC), such as carbohydrate-active enzymes. In addition, 36.5% of the functional genes in BC were significantly higher than those in NC. The changes of metabolic functions and functional genes were significantly correlated with the microbial succession. Moreover, the bacteria that proliferated in vermicompost, including Corynebacterium, Vagococcus, and Providencia, had strong metabolic abilities. Systematic and complex interactions between the BSF gut and BC bacteria occurred over time through invasion, altered the microbial community structure, and thus evolved into a new intermediate niche favourable for FW biodegradation. The study highlights BSF gut microbiome as an engine for FW bioconversion, which is conducive to bioproducts regeneration from wastes.


Subject(s)
Composting/methods , Diptera/metabolism , Diptera/microbiology , Food , Gastrointestinal Microbiome , Animals , Biotransformation , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Larva/metabolism , Larva/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Waste Management/methods
8.
Microbiome ; 6(1): 187, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340631

ABSTRACT

BACKGROUND: Paddy soil dissolved organic matter (DOM) represents a major hotspot for soil biogeochemistry, yet we know little about its chemodiversity let alone the microbial community that shapes it. Here, we leveraged ultrahigh-resolution mass spectrometry, amplicon, and metagenomic sequencing to characterize the molecular distribution of DOM and the taxonomic and functional microbial diversity in paddy soils across China. We hypothesized that variances in microbial community significantly associate with changes in soil DOM molecular composition. RESULTS: We report that both microbial and DOM profiles revealed geographic patterns that were associated with variation in mean monthly precipitation, mean annual temperature, and pH. DOM molecular diversity was significantly correlated with microbial taxonomic diversity. An increase in DOM molecules categorized as peptides, carbohydrates, and unsaturated aliphatics, and a decrease in those belonging to polyphenolics and polycyclic aromatics, significantly correlated with proportional changes in some of the microbial taxa, such as Syntrophobacterales, Thermoleophilia, Geobacter, Spirochaeta, Gaiella, and Defluviicoccus. DOM composition was also associated with the relative abundances of the microbial metabolic pathways, such as anaerobic carbon fixation, glycolysis, lignolysis, fermentation, and methanogenesis. CONCLUSIONS: Our study demonstrates the continental-scale distribution of DOM is significantly correlated with the taxonomic profile and metabolic potential of the rice paddy microbiome. Abiotic factors that have a distinct effect on community structure can also influence the chemodiversity of DOM and vice versa. Deciphering these associations and the underlying mechanisms can precipitate understanding of the complex ecology of paddy soils, as well as help assess the effects of human activities on biogeochemistry and greenhouse gas emissions in paddy soils.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Microbiota/genetics , Organic Chemicals/analysis , Oryza/microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Carbon Cycle , Geography , Mass Spectrometry , Metagenome/genetics , Soil Microbiology
9.
Br J Pharmacol ; 146(4): 604-11, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16086036

ABSTRACT

The effects of paeoniflorin (PF), a compound isolated from Paeony radix, on neurological impairment and histologically measured infarction volume following transient and permanent focal ischemia were examined in Sprague-Dawley rats. In transient ischemia model, rats were subjected to a 1.5-h occlusion of the middle cerebral artery (MCA). The administration of PF (2.5 and 5 mg kg(-1), s.c.) produced a dose-dependent decrease in both neurological impairment and the histologically measured infarction volume. Similar results were also obtained when PF (2.5, 5, and 10 mg kg(-1), s.c.) was given in permanent ischemia model. The neuroprotective effect of PF (10 mg kg(-1), s.c.) was abolished by pretreatment of DPCPX (0.25 mg kg(-1), s.c.), a selective adenosine A1 receptor (A1R) antagonist. PF (10, 40, and 160 mg kg(-1), i.v.) had no effect on mean arterial pressure (MAP) and heart rates (HR) in the conscious rat. Additionally, PF (10(-3) mol l(-1)) had no effect on noradrenaline- (NA-) or high K+ concentration-induced contractions of isolated rabbit primary artery. In competitive binding experiments, PF did not compete with the binding of [3H]DPCPX, but displaced the binding of [3H]NECA to the membrane preparation of rat cerebral cortex. This binding manner was distinguished from the classical A1R agonists. The results demonstrated that activation of A1R might be involved in PF-induced neuroprotection in cerebral ischemia in rat. However, PF had no 'well-known' cardiovascular side effects of classical A1R agonists. The results suggest that PF might have the potential therapeutic value as an anti-stroke drug.


Subject(s)
Benzoates/pharmacology , Bridged-Ring Compounds/pharmacology , Glucosides/pharmacology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Attack, Transient/prevention & control , Neuroprotective Agents/pharmacology , Paeonia , Receptor, Adenosine A1/drug effects , Adenosine-5'-(N-ethylcarboxamide)/metabolism , Animals , Benzoates/administration & dosage , Benzoates/metabolism , Binding, Competitive , Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Glucosides/administration & dosage , Glucosides/metabolism , Infarction, Middle Cerebral Artery/pathology , Inhibitory Concentration 50 , Ischemic Attack, Transient/pathology , Male , Monoterpenes , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/metabolism , Plant Roots , Rats , Rats, Sprague-Dawley , Receptor, Adenosine A1/metabolism , Time Factors , Xanthines/administration & dosage , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...