Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Clin Epigenetics ; 16(1): 11, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212818

ABSTRACT

BACKGROUND: As an oncovirus, EBV is associated with multiple cancers, including solid tumors and hematological malignancies. EBV methylation plays an important role in regulating tumor occurrence. However, the EBV methylation profiles in EBV-associated tumor tissues are poorly understood. RESULTS: In this study, EBV methylation capture sequencing was conducted in several different tumor tissue samples, including NPC, EBVaGC, lung LELC and parotid LELC. Besides, EBV capture sequencing and following qMSP were performed on nasopharyngeal brushing samples from NPC and nasal NKTCL patients. Our results showed that the EBV genome among different types of tumors displayed specific methylation patterns. Among the four types of tumors from epithelial origin (NPC, EBVaGC, lung LELC and parotid LELC), the most significant differences were found between EBVaGC and the others. For example, in EBVaGC, all CpG sites within 1,44,189-1,45,136 bp of the EBV genome sequence on gene RPMS1 were hyper-methylated compared to the others. Differently, significant differences of EBV CpG sites, particularly those located on gene BILF2, were observed between NPC and nasal NKTCL patients in nasopharyngeal brushing samples. Further, the methylated level of BILF2 was further detected using qMSP, and a diagnostic model distinguishing NPC and nasal NKTCL was established. The AUC of the model was 0.9801 (95% CI 0.9524-1.0000), with the sensitivity and specificity of 98.81% (95% CI 93.63-99.94%) and 76.92% (95% CI 49.74-91.82%), respectively. CONCLUSIONS: Our study reveals more clues for further understanding the pathogenesis of EBV, and provides a possibility for distinguishing EBV-related tumor by detecting specific EBV CpG sites.


Subject(s)
Carcinoma , Lymphoma, T-Cell , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , DNA Methylation , Carcinoma/genetics , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/genetics , Lymphoma, T-Cell/genetics
2.
Biosens Bioelectron ; 237: 115546, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37523811

ABSTRACT

Sensitive and accurate cell-free plasma Epstein-Barr virus (EBV) DNA measurement is essential in the routine diagnosis, monitoring and treatment of Nasopharyngeal Carcinoma (NPC). This measurement in commercial and in-house assay are commonly based on real-time quantitative PCR (qPCR) method, which requires reference materials for standardization and lack quantitative precision due to amplification bias or cross-contamination. To address these issues, we developed a CRISPR/Cas12a-mediated amplification-free digital DNA assay, which targets the repetitive sequences of EBV DNA and utilizes the cis-cleavage activity of CRISPR-Cas12a prior to droplet generation. By this mean, more activated Cas12a-crRNA duplexes could be produced for subsequent target detection and counting, thus improving the performance in detecting low EBV DNA load. We demonstrated that it was more robust than conventional qPCR for detecting plasma EBV DNA in a case-control study of 208 participants, especially when the target concentrations were around the diagnostic cut-off value for NPC. More importantly, this assay allowed a more accurate diagnosis of early-stage NPC, with an area under the curve (AUC) of 0.9883 (versus 0.7682 for qPCR). Furthermore, its absolute quantification capability enabled dynamic monitoring of EBV load in NPC patients during initial diagnosis, treatment, and recurrence, thereby potentially improving disease management and prognosis. Taken together, our results demonstrate that this amplification-free digital assay has the potential to be a robust tool to improve the diagnosis and surveillance of NPC.


Subject(s)
Biosensing Techniques , Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/genetics , CRISPR-Cas Systems/genetics , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Case-Control Studies , Herpesvirus 4, Human/genetics , DNA, Viral/genetics , Real-Time Polymerase Chain Reaction
3.
J Med Virol ; 95(6): e28860, 2023 06.
Article in English | MEDLINE | ID: mdl-37310118

ABSTRACT

Human leukocyte antigen (HLA) molecules are essential for presenting Epstein-Barr virus (EBV) antigens and are closely related to nasopharyngeal carcinoma (NPC). This study aims to systematically investigate the association between HLA-bound EBV peptides and NPC risk through in silico HLA-peptide binding prediction. A total of 455 NPC patients and 463 healthy individuals in NPC endemic areas were recruited, and HLA-target sequencing was performed. HLA-peptide binding prediction for EBV, followed by peptidome-wide logistic regression and motif analysis, was applied. Binding affinity changes for EBV peptides carrying high-risk mutations were analyzed. We found that NPC-associated EBV peptides were significantly enriched in immunogenic proteins and core linkage disequilibrium (LD) proteins related to evolution, especially those binding HLA-A alleles (p = 3.10 × 10-4 for immunogenic proteins and p = 8.10 × 10-5 for core LD proteins related to evolution). These peptides were clustered and showed binding motifs of HLA supertypes, among which supertype A02 presented an NPC-risk effect (padj = 3.77 × 10-4 ) and supertype A03 presented an NPC-protective effect (padj = 4.89 × 10-4 ). Moreover, a decreased binding affinity toward risk HLA supertype A02 was observed for the peptide carrying the NPC-risk mutation BNRF1 V1222I (p = 0.0078), and an increased binding affinity toward protective HLA supertype A03 was observed for the peptide carrying the NPC-risk mutation BALF2 I613V (p = 0.022). This study revealed the distinct preference of EBV peptides for binding HLA supertypes, which may contribute to shaping EBV population structure and be involved in NPC development.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Epitopes , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Nasopharyngeal Carcinoma/genetics , Histocompatibility Antigens Class II , Nasopharyngeal Neoplasms/genetics
4.
Int J Cancer ; 153(4): 882-892, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37170851

ABSTRACT

Saliva sampling is a non-invasive method, and could be performed by donors themselves. However, there are few studies reporting biomarkers in saliva in the diagnosis of NPC. A total of 987 salivary samples were used in this study. First, EBV DNA methylation was profiled by capture sequencing in the discovery cohort (n = 36). Second, a q-PCR based method was developed and five representative EBV DNA CpG sites (11 029 bp, 45 849 bp, 57 945 bp, 66 226 bp and 128 102 bp) were selected and quantified to obtain the methylated density in the validation cohort1 (n = 801). Third, a validation cohort2 (n = 108) was used to further verify the differences of EBV methylation in saliva. A significant increase of EBV methylation was found in NPC patients compared with controls. The methylated score of EBV genome obtained by capture sequencing could distinguish NPC from controls (sensitivity 90%, specificity 100%). Further, the methylated density of EBV DNA CpG sites revealed by q-PCR showed a good diagnostic performance. The sensitivity and specificity of detecting a single CpG site (11 029 bp) could reach 75.4% and 99.7% in the validation cohort1, and 78.2% and 100% in the validation cohort2. Besides, the methylated density of the CpG site was found to decrease below the COV in NPC patients after therapy, and increase above the COV after recurrence. Our study provides an appealing alternative for the non-invasive detection of NPC without clinical setting. It paves the way for conducting a home-based large-scale screening in the future.


Subject(s)
DNA Methylation , Epstein-Barr Virus Infections , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Saliva/chemistry , Biopsy , Humans , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human , Case-Control Studies , DNA, Viral/genetics , CpG Islands
5.
Int J Cancer ; 152(12): 2629-2638, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36878711

ABSTRACT

Detecting EBV DNA load in nasopharyngeal (NP) brushing samples for the diagnosis of nasopharyngeal carcinoma (NPC) has attracted widespread attentions. Currently, NP brush sampling mostly relies on endoscopic guidance, and there are few reports on diagnostic markers suitable for nonguided conditions (blind brush sampling), which is of great significance for extending its application. One hundred seventy nasopharyngeal brushing samples were taken from 98 NPC patients and 72 non-NPC controls under the guidance of endoscope, and 305 blind brushing samples were taken without endoscopic guidance from 164 NPC patients and 141 non-NPC controls (divided into discovery and validation sets). Among these, 38 cases of NPC underwent both endoscopy-guided NP brushing and blind brushing. EBV DNA load targeting BamHI-W region and EBV DNA methylation targeting 11029 bp CpG site located at Cp-promoter region were detected by quantitative polymerase chain reaction (q-PCR). EBV DNA load showed good classification accuracy for NPC in endoscopy-guided brushing samples (AUC = 0.984). However, in blind bushing samples, the diagnostic performance was greatly reduced (AUC = 0.865). Unlike EBV DNA load, the accuracy of EBV DNA methylation was less affected by brush sampling methods, whether in endoscopy-guided brushing (AUC = 0.923) or blind brushing (AUC = 0.928 in discovery set and AUC = 0.902 in validation set). Importantly, EBV DNA methylation achieved a better diagnostic accuracy than EBV DNA load in blind brushing samples. Overall, detection of EBV DNA methylation with blind brush sampling shows great potential in the diagnosis of NPC and may facilitate its use in nonclinical screening of NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , DNA Methylation , DNA, Viral/genetics
6.
Appl Opt ; 60(25): 7530-7535, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613218

ABSTRACT

We experimentally demonstrate an electrically tunable superconducting device capable of switching the extraordinary terahertz (THz) transmission. The planar device consists of subwavelength hole arrays with real-time control capability. The maximum transmission coefficient at 0.33 THz is 0.98 and decreases to 0.17 when the applied voltage only increases to 1.3 V. A relative intensity modulation of 82.7% is observed, making this device an efficient THz switch. Additionally, this device exhibits good narrow-bandpass characteristics within 2 THz, which can be used as a frequency-selective component. This study offers an ideal tuning method and delivers a promising approach for designing active and miniaturized devices in THz cryogenic systems.

7.
Nat Commun ; 12(1): 1359, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649336

ABSTRACT

Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunomodulation , Immunotherapy , Nanoparticles/chemistry , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Immobilized Proteins/metabolism , Immunity , Killer Cells, Natural/immunology , Male , Mice, Inbred C57BL , Nanoparticles/ultrastructure , T-Lymphocytes/immunology
8.
Opt Lett ; 45(10): 2894-2897, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32412495

ABSTRACT

In this Letter, we propose and demonstrate a new type of planar double-slot antenna for a Nb5N6 microbolometer terahertz (THz) detector. The calculated results show that the planar antenna possessed high coupling efficiency, and the THz signals were obviously focused on the antenna center place. The new planar antenna was integrated with Nb5N6 microbolometer THz detectors using micro-fabrication technology. The measured results showed that the maximum optical voltage responsivity (Ro) of the detectors reached up to 113 V/W at 0.643 THz, and the corresponding noise equivalent power was 44pW/√Hz. In addition, the performance of double-slot antennas applied into array detectors in a tunable Fabry-Perot cavity was investigated. The measured results of the Nb5N6 THz detector remained almost unchanged when the distance between the chip substrate and the copper plate was altered. This indicated that this planar double-slot antenna, which possessed the advantages of high coupling efficiency and easy integration, has great application prospects in a THz detector.

9.
Biomater Sci ; 8(8): 2255-2263, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32129378

ABSTRACT

Cell-penetrating peptides (CPPs) have been considered as a powerful tool to improve the intracellular and nuclear delivery efficiency of nanocarriers. However, their clinical application is limited because of their nonspecific targeting function, short half-life, and severe system toxicity. Herein, we have developed a polymeric nanocarrier with a tumor acidity-activatable arginine-rich (R9) peptide for targeted drug delivery. The nanocarrier is fabricated with a R9-conjugated amphiphilic diblock polymer of poly(ethylene glycol) (PEG) and poly(hexyl ethylene phosphate) (PHEP), and then further coated with tumor acidity-activatable polyanionic polyphosphoester through electrostatic interaction in order to block the nonspecific targeting function of the R9 peptide. In the slightly acidic tumor extracellular environment (∼pH 6.5), tumor acidity-activatable polyanionic polyphosphoester would be deshielded from the nanoparticles, resulting in the re-exposure of the R9 peptide to enhance tumor cellular uptake. As a result, intracellular concentration of payload in 4T1 tumor cells significantly increased at pH 6.5. And, we further demonstrate that such a delivery system remarkably promoted the anti-tumor efficiency of chemotherapeutic drugs in tumor-bearing mice, offering great potential for drug delivery and cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Nanoparticles/administration & dosage , Polymers/administration & dosage , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Female , Hydrogen-Ion Concentration , Mammary Neoplasms, Experimental/chemistry , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, Inbred BALB C , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacokinetics , Static Electricity , Tumor Burden/drug effects
10.
Nano Lett ; 19(8): 5356-5365, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31286779

ABSTRACT

Certain chemotherapeutics (e.g., oxaliplatin, OXA) can evoke effective antitumor immunity responses by inducing immunogenic cell death (ICD). Unfortunately, tumors always develop multiple immunosuppressive mechanisms, such as the upregulation of immunosuppressive factors, to counteract the effects of immunogenic chemotherapy. Indoleamine 2,3-dioxygenase-1 (IDO1), a tryptophan catabolic enzyme overexpressed in tumor-draining lymph nodes (TDLNs) and tumor tissues, plays a pivotal role in the generation of the immunosuppressive microenvironment. Reversing IDO1-mediated immunosuppression may strengthen the ICD-induced immune response. Herein, we developed a nanoenabled approach for IDO1 pathway interference, which is accomplished by delivering IDO1 siRNA to both TDLNs and tumor tissues with the help of cationic lipid-assisted nanoparticles (CLANs). We demonstrated that the contemporaneous administration of OXA and CLANsiIDO1 could achieve synergetic antitumor effects via promoting dendritic cell maturation, increasing tumor-infiltrating T lymphocytes and decreasing the number of regulatory T cells in a subcutaneous colorectal tumor model. We further proved that this therapeutic strategy is applicable for the treatment of orthotopic pancreatic tumors and offers a strong immunological memory effect, which can provide protection against tumor rechallenge.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Neoplasms/therapy , RNA, Small Interfering/administration & dosage , RNAi Therapeutics/methods , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Humans , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Male , Mice, Inbred BALB C , Nanoparticles/chemistry , Neoplasms/genetics , Oxaliplatin/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
11.
Opt Lett ; 44(4): 1019-1022, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768038

ABSTRACT

This Letter demonstrates tunable Nb5N6 microbolometers operating in the terahertz frequency range. An asymmetric-coupled Fabry-Pérot cavity is constituted by simply placing a movable metallic planar mirror in the back of the silicon substrate. The incident THz radiation onto the Nb5N6 microbolometer is effectively manipulated by changing the air spacer gap to modulate the phase relation between the reflected wave and incident wave. The experimental measurements reveal that the detailed evolution of the resonance bands as a function of spacing is in excellent agreement with the analysis by using interference theory and simulation. The results detail the design of THz detectors wherein a wide degree of tunability or a variable number of detection bands is desirable.

12.
Opt Express ; 26(12): 15585-15593, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114817

ABSTRACT

Room-temperature thermal detection at a wavelength of 2 µm in the short-wave infrared range (1.7-3 µm) was demonstrated for the first time using a Nb5N6 microbolometer. The photothermal responses of two types of Nb5N6 microbolometers were evaluated. By suspending Nb5N6 microwires in the air above the substrate, a reduction in thermal conductance of the device by a factor of 39 was achieved. The measured optical voltage responsivity RO of the Nb5N6 microbolometer reached the value of 61.5 V/W. A noise equivalent power of 8.5 × 10-11 W/√Hz (at 1 kHz) and a detectivity D* = 2.0 × 107 cm√Hz /W with a typical response time as small as 0.17 ms was obtained at a wavelength of 2 µm for a 10 × 30-µm2 device. The performance could be improved further by optimizing the design and operating parameters. This study revealed a simple low-cost technique to develop a large-scale focal plane array in silicon for infrared detection.

13.
Sci Rep ; 8(1): 8032, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29795176

ABSTRACT

A reflective grating-coupled structure on the silicon substrate was designed to improve the detection efficiency of terahertz detectors for the frequency ranging from 0.26 THz to 0.36 THz. By using finite difference time domain (FDTD) solutions, the simulation and optimized design of the grating-coupled structure were carried out. The results showed that the signal was effectively reflected and diffracted by the reflective grating-coupled structure which significantly enhanced the electric field in the place of the detector. The maximum electric field can be increased by 2.8 times than that of the Fabry-Perot resonator. To verify the design results, the reflective grating-coupled structure was applied in the preparation of the Nb5N6 array detector chip and compared with the Nb5N6 array detector chip with the F-P resonator. The results showed that the maximum voltage responsivity of the Nb5N6 detector with the reflective grating-coupled structure was 2 times larger than the Nb5N6 detector with the F-P resonator. It indicates that the reflective grating-coupled structure can efficiently improve the detection efficiency of THz detectors.

14.
Opt Express ; 26(7): 8990-8997, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715857

ABSTRACT

Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb5N6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb5N6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.

15.
Forensic Sci Int Genet ; 12: 12-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24854874

ABSTRACT

In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.


Subject(s)
Chromosomes, Human, Y , Haplotypes , Microsatellite Repeats , Alleles , Forensic Genetics , Humans
16.
J Forensic Sci ; 49(4): 754-9, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15317190

ABSTRACT

It has been a challenge to extract DNA from bones previously soaked in water, burned, or buried for a long time, due to the reduced quality and quantity of DNA in the bone samples. The dramatic degradation of the DNA and the presence of PCR inhibitors in the collagen significantly complicate the process of DNA identification in dated and charred bones. In this article, we present a novel strategy to obtain DNA from bones based on the use of cetyltrimethylammonium bromide (CTAB) lysis buffer and isoamyl alcohol-chloroform extraction with subsequent DNA purification using the DNA IQ System, or alternatively the QIAquick system. When applied to bones soaked, burned or buried for up to nine years, this method increases the purity and yield of DNA with respect to the traditional phenol-chloroform method and significantly improves multiplex STR genotyping using fluorescence-based methods. The results of this research will assist forensic scientists in the identification of DNA from victims whose bodies underwent significant trauma or burning, precluding the utilization of traditional forensic DNA identification techniques.


Subject(s)
Bone and Bones/chemistry , DNA Fingerprinting/methods , DNA/isolation & purification , Forensic Anthropology/methods , Buffers , Cetrimonium , Cetrimonium Compounds , Chloroform , Genotype , Humans , Pentanols , Solvents , Surface-Active Agents , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...