Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cancer Med ; 13(9): e7222, 2024 May.
Article in English | MEDLINE | ID: mdl-38698687

ABSTRACT

BACKGROUND: The prognostic predictive tool for patients with colorectal liver metastasis (CRLM) is limited and the criteria for administering preoperative neoadjuvant chemotherapy in CRLM patients remain controversial. METHODS: This study enrolled 532 CRLM patients at West China Hospital (WCH) from January 2009 to December 2019. Prognostic factors were identified from the training cohort to construct a WCH-nomogram and evaluating accuracy in the validation cohort. Receiver operating characteristic (ROC) curve analysis was used to compare the prediction accuracy with other existing prediction tools. RESULTS: From the analysis of the training cohort, four independent prognostic risk factors, namely tumor marker score, KRAS mutation, primary lymph node metastasis, and tumor burden score were identified on which a WCH-nomogram was constructed. The C-index of the two cohorts were 0.674 (95% CI: 0.634-0.713) and 0.655 (95% CI: 0.586-0.723), respectively, which was better than the previously reported predication scores (CRS, m-CS and GAME score). ROC curves showed AUCs for predicting 1-, 3-, and 5-year overall survival (OS) of 0.758, 0.709, and 0.717 in the training cohort, and 0.860, 0.669, and 0.692 in the validation cohort, respectively. A cutoff value of 114.5 points was obtained for the WCH-nomogram total score based on the maximum Youden index of the ROC curve of 5-year OS. Risk stratification showed significantly better prognosis in the low-risk group, however, the high-risk group was more likely to benefit from neoadjuvant chemotherapy. CONCLUSIONS: The WCH-nomogram demonstrates superior prognostic stratification compared to prior scoring systems, effectively identifying CRLM patients who may benefit the most from neoadjuvant chemotherapy.


Subject(s)
Colorectal Neoplasms , Hepatectomy , Liver Neoplasms , Nomograms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Liver Neoplasms/drug therapy , Male , Female , Middle Aged , Prognosis , Aged , ROC Curve , Neoadjuvant Therapy , Biomarkers, Tumor , Adult , Proto-Oncogene Proteins p21(ras)/genetics , Risk Factors , Retrospective Studies , China , Lymphatic Metastasis , Mutation , Tumor Burden
3.
Anal Chem ; 96(16): 6186-6194, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38594223

ABSTRACT

Solvatochromes have gained great attention because of their unique roles in monitoring biomolecular location, interaction, and dynamics. Particularly, solvatochromes presenting both red-shifting excitation and dual-band switchable emission are in great demand yet significantly difficult to come true. In this article, we disclose an aromatic alcohol-based pH-sensitive chromophore NIR-HBT that not only presents red-shifting excitation and solvent-dependent dual-band emission but also shows high photostability and excellent brightness. To the best of our knowledge, this is the first solvatochrome to simultaneously display these optical properties. Especially, in contrast to the reported dual-band solvatochromes whose solvatochromism is achieved by affecting their excited state behaviors, the solvatochromism of NIR-HBT is realized by modulating its ground state proton dissociation, which is a new solvatochromic mechanism that has not been reported. Furthermore, based on the dual-band solvatochromism of NIR-HBT and its intrinsic binding ability to GQs, near-infrared ratiometric detection of GQs is achieved. These results indicate that NIR-HBT is an attractive solvatochrome that can be used to develop near-infrared ratiometric biosensors for biological research. More broadly, the discovered solvatochromic mechanism can also open new horizons for exploring the solvatochrome.

4.
Asian J Surg ; 47(5): 2138-2143, 2024 May.
Article in English | MEDLINE | ID: mdl-38443255

ABSTRACT

Hepatectomy is widely considered a potential treatment for hepatocellular carcinoma (HCC). Unfortunately, one-third of HCC patients have tumor recurrence within 2 years after surgery (early recurrence), accounting for more than 60% of all recurrence patients. Early recurrence is associated with a worse prognosis. Previous studies have shown that microvascular invasion (MVI) is one of the key factors for early recurrence and poor prognosis in patients with HCC after surgery. This paper reviews the latest literature and summarizes the predictors of MVI, the correlation between MVI and early recurrence, the identification of suspicious nodules or subclinical lesions, and the treatment strategies for MVI-positive HCC. The aim is to explore the management of patients with MVI-positive HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Microvessels , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Humans , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Microvessels/pathology , Prognosis , Time Factors
5.
Biosens Bioelectron ; 254: 116205, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38484411

ABSTRACT

In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the ß-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 µM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.


Subject(s)
Biosensing Techniques , Quantum Dots , Animals , Fluoroquinolones , Terbium/chemistry , Carbon/chemistry , Polymers/chemistry , Reproducibility of Results , Quantum Dots/chemistry , Fluorescent Dyes/chemistry
6.
J Colloid Interface Sci ; 661: 1060-1069, 2024 May.
Article in English | MEDLINE | ID: mdl-38335790

ABSTRACT

Herein, a novel dual-mode probe for organophosphorus pesticides (OPs) colorimetric and photothermal detection was developed based on manganese modified porphyrin metal-organic framework (PCN-224-Mn). PCN-224-Mn had excellent oxidase-like activity and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB) to blue-green oxidation state TMB (oxTMB), which exhibited high temperature under near-infrared irradiation. l-ascorbate-2-phosphate was hydrolyzed by acid phosphatase to produce ascorbic acid, which weakened colorimetric and photothermal signals by impacting oxTMB generation. The presence of OPs blocked the production of ascorbic acid by irreversibly inhibiting the activity of acid phosphatase, causing the restoration of chromogenic reaction and the increase of temperature. Under the optimal conditions, the probe showed a good linear response to OPs in the concentration range of 5 âˆ¼ 10000 ng/mL, using glyphosate as the analog. The detection limits of glyphosate in colorimetric mode and photothermal mode were 1.47 ng/mL and 2.00 ng/mL, respectively. The probe was successfully used for sensitive identification of OPs residues in tea, brown rice, and wheat flour. This work proposes a simple and reliable colorimetric/photothermal platform for OPs identification, which overcomes the problem that single-mode detection probes are susceptible to external factors, and has broad application potential in the field of food safety.


Subject(s)
Benzidines , Metal-Organic Frameworks , Pesticides , Organophosphorus Compounds , Colorimetry , Flour , Triticum , Ascorbic Acid/chemistry , Acid Phosphatase
7.
J Phys Condens Matter ; 36(22)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38417156

ABSTRACT

The discovery of new superconductors based on topological insulators always captures special attention due to their unique structural and electronic properties. High pressure is an effective way to regulate the lattice as well as electronic states in the topological insulators, thus altering their electronic properties. Herein, we report the structural and electrical transport properties of the topological insulator GeBi2Te4by using high-pressure techniques. The synchrotron x-ray diffraction revealed that GeBi2Te4underwent two structural phase transitions fromR-3m(phase I) toC2/m(phase II) and then intoIm-3m(phase III). Superconductivity was observed at 6.6 GPa to be associated with the first structural phase transition. The superconducting transition temperatureTcreached a maximum value of 8.4 K, accompanied by theRHsign changing from negative to positive at 14.6 GPa, then gradually decreased with increasing pressure in phase III, showing a dome-shaped phase diagram. The present results provide a platform for understanding the interplay between the crystal structure and superconductivity by the regulation of pressure in the topological insulator materials.

8.
Carbohydr Polym ; 328: 121741, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220351

ABSTRACT

Deep eutectic solvents (DES) have been regarded as green solvents in the biorefinery of lignocellulosic biomass, but long duration time has severely limited efficiency. The microwave-assisted DES pretreatment along with enzymatic hydrolysis and high-pressure homogenization process was proposed to produce lignin-containing cellulose nanofibrils (LCNF) from corncob. Benefiting from microwave-assisted DES pretreatment, the duration time was greatly shortened; meanwhile the effects of different kinds of DES on the resultant LCNF were investigated. The results showed that, the microwave-assisted DES fabricated LCNF (M-LCNF) was successfully obtained, exhibiting good nano size, thermal stability, colloidal stability, and fluorescence. M-LCNF was further introduced into phytic acid (PA) enhanced poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) network and constructed composite conductive hydrogels (PLP). The obtained hydrogels exhibited good mechanical strength, UV blocking ability, fluorescence, and conductivity. A simple battery assembled with the resultant PLP as electrolyte had an out voltage of 2.41 V. The composite conductive hydrogel showed good sensing performance towards different stimuli (e.g., stretching and compression) and human motions in real time. It is expected that this research would provide an alternative way for green fabrication of LCNF and potential application of LCNF in flexible sensors.

9.
Int J Biol Macromol ; 260(Pt 2): 129587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253157

ABSTRACT

Lignocellulosic biomass exhibits a promising potential for production of carbon materials. Nitrogen and phosphorus co-doped carbon quantum dots (N,P-CQDs) were fabricated via (NH4)2HPO4 assisted hydrothermal treatment of cellulose pulp fibers. The as-prepared N,P-CQDs were characterized by HRTEM, FTIR, fluorescence and UV-vis, and then incorporated into g-C3N4 (CN) through sonication and liquid deposition, forming N,P-CQDs/sonication treated g-C3N4 (C-SCN) composites, which were then explored as photocatalysts. The photocatalytic ability of C-SCN towards model lignin was further analyzed. The results showed that, the fluorescence intensity and photoluminescence performance of N,P-CQDs were much higher than that of CQDs; the heterojunction was successfully constructed between the composites of N,P-CQDs and SCN; the incorporation of N,P-CQDs enhanced the visible light absorption, but reduced the band gap of the composite heterojunction; the resultant photocatalysts exhibited a good photocatalytic ability of model lignin via catalyze the fracture of ß-O-4' ether bond and CC bond, i.e., the photocatalytic degradation ratio reached up to 95.5 %; and the photocatalytic reaction generated some valuable organics such as phenyl formate, benzaldehyde, and benzoic acid. This study would promote the high value-added utilization of lignocellulosic resources especially in the transformation of lignin, conforming the concept of sustainable development.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Lignin , Cellulose , Quantum Dots/chemistry , Nitrogen
10.
Bioresour Technol ; 394: 130230, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141882

ABSTRACT

Lignin is the most abundant natural aromatic macromolecule in the nature, but its high value-added utilization has been seriously hindered by the highly random and branched structures and the high difficulty in separation and purification. A microwave-assisted ternary deep eutectic solvent (DES) composed by formic acid, lactic acid and choline chloride was developed for lignin pretreatment. The effects of three types of DES on main characteristics of lignin were investigated, and the corresponding dissolution mechanism was proposed. The results showed that, the microwave-assisted ternary DES pretreatment showed an obvious improvement on main characteristics of regenerated lignin, e.g., a higher purity, lower molecular weight with reduced dispersity, improved thermal stability, higher phenolic hydroxyl content, and increased antioxidative activity in comparison with control. It is expected that the lignin macromolecular can be facile regulated and upgraded by the proposed ternary DES.


Subject(s)
Deep Eutectic Solvents , Lignin , Lignin/chemistry , Solvents/chemistry , Biomass , Lactic Acid , Hydrolysis
12.
Sensors (Basel) ; 23(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447999

ABSTRACT

Global Navigation Satellite System (GNSS) observations are subject to various errors during their propagation process. A reasonable correction of these errors can improve the positioning, navigation, and timing (PNT) service capability. The impact of multipaths on pseudorange observations can reach a decimeters or even meters level. However, their mechanism is complex and there is currently no universally accepted high-precision correction model. The correlation between the pseudorange multipaths (MP) of BDS-2 satellites and satellite elevation has been confirmed, while there have been fewer analyses of the MP characteristics for different frequencies of BDS-3 satellites. The broadcasting of multi-frequency observations in BDS-3 should theoretically make the extracted MP more accurate compared to traditional methods. Based on this, in this contribution, a multi-frequency MP extraction algorithm based on the least squares principle is proposed, which can simultaneously eliminate the influence of higher-order ionospheric delay. The analytical expression for only eliminating first-order ionospheric delay is successfully derived. Subsequently, the characteristics of the MPs extracted from different frequency combinations and the impact of combination noise on the extraction accuracy are discussed. The influence of second-order ionospheric delay on the MPs for each frequency under different combination noises, as well as the periodic behavior exhibited in long-term observations of the BDS-3 medium earth orbit (MEO) and inclined geosynchronous orbit (IGSO) satellites, are also analyzed. Finally, the correlations between the MPs of each frequency of BDS satellite and elevation are quantitatively analyzed based on observations from 35 stations. Overall, this work has positive implications for the study of the MP characteristics of BDS-3 and subsequent modeling efforts.


Subject(s)
Algorithms , Records
13.
Aging (Albany NY) ; 15(14): 6757-6773, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37506247

ABSTRACT

Acute myeloid leukemia is a heterogeneous disease of the hematopoietic system, which possesses a poor prognosis; thus, the identification of novel molecular markers is urgently needed to better define the risk stratification and optimize treatment therapies for this disease. Here, we investigated the roles of the PARP family genes in AML by analyzing their mRNA expression profiles and their association with clinical features using data from TCGA and GSE. Our results showed that PARP10 was significantly more highly expressed in AML samples than in normal controls, and high expression of PARP10 was associated with older age (≥60 years, P = 0.012), more frequent TP53 mutations (P = 0.024), high-risk stratification (P < 0.05), and poorer outcomes (P < 0.05). Patients with high expression of PARP10 exhibited significantly poorer overall survival (OS) and event-free survival (EFS) than those with low PARP10 expressions (OS: median: 0.88 vs. 2.19 years; P = 0.001; EFS: median: 0.65 vs. 1.12 years; P = 0.041). Multivariate analysis indicated that high expression of PARP10 was an independent risk factor for poorer OS and EFS in AML patients. Moreover, we found that allo-SCT improved OS for AML patients with high PARP10 expression but not for patients with low PARP10 expression, while allo-SCT decreased EFS for patients with low PARP10 expression. Finally, we confirmed that PARP10 knockout impaired AML cell proliferation in vitro. In summary, our data suggested that PARP10 is aberrantly expressed in AML, and high expression of PARP10 might be a biomarker for poor prognosis and also a potential indicator for allo-SCT therapy, which might provide precise treatment indications for physicians.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Mutation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/drug therapy , Progression-Free Survival , Multivariate Analysis , Prognosis , Poly(ADP-ribose) Polymerases/genetics , Proto-Oncogene Proteins/genetics
14.
Opt Lett ; 48(9): 2337-2340, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126268

ABSTRACT

The gauge fields dramatically alter the algebraic structure of spatial symmetries and make them projectively represented, giving rise to novel topological phases. Here, we propose a photonic Möbius topological insulator enabled by projective translation symmetry in multiorbital waveguide arrays, where the artificial π gauge flux is aroused by the inter-orbital coupling between the first (s) and third (d) order modes. In the presence of π flux, the two translation symmetries of rectangular lattices anti-commute with each other. By tuning the spatial spacing between two waveguides to break the translation symmetry, a topological insulator is created with two Möbius twisted edge bands appearing in the bandgap and featuring 4π periodicity. Importantly, the Möbius twists are accompanied by discrete diffraction in beam propagation, which exhibit directional transport by tuning the initial phase of the beam envelope according to the eigenvalues of translation operators. This work manifests the significance of gauge fields in topology and provides an efficient approach to steering the direction of beam transmission.

15.
Chem Sci ; 14(7): 1715-1723, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36819858

ABSTRACT

The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.

16.
Plant Physiol ; 191(2): 957-973, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36459464

ABSTRACT

The photosynthetic mechanism of crop yields in fluctuating light environments in the field remains controversial. To further elucidate this mechanism, we conducted field and simulation experiments using maize (Zea mays) plants. Increased planting density enhanced the light fluctuation frequency and reduced the duration of daily high light, as well as the light-saturated photosynthetic rate, biomass, and yield per plant. Further analysis confirmed a highly significant positive correlation between biomass and yield per plant and the duration of photosynthesis related to daily high light. The simulation experiment indicated that the light-saturated photosynthetic rate of maize leaves decreased gradually and considerably when shortening the daily duration of high light. Under an identical duration of high light exposure, increasing the fluctuation frequency decreased the light-saturated photosynthetic rate slightly. Proteomic data also demonstrated that photosynthesis was mainly affected by the duration of high light and not by the light fluctuation frequency. Consequently, the current study proposes that an appropriate duration of daily high light under fluctuating light environments is the key factor for greatly improving photosynthesis. This is a promising mechanism by which the photosynthetic productivity and yield of maize can be enhanced under complex light environments in the field.


Subject(s)
Proteomics , Zea mays , Photosynthesis , Biomass , Plant Leaves , Light
17.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498855

ABSTRACT

A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.


Subject(s)
Carbon Dioxide , Zea mays , Carbon Dioxide/pharmacology , Light , Photosynthesis , Plant Leaves , Diffusion
18.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499324

ABSTRACT

Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.


Subject(s)
Helianthus , Chlorophyll A/analysis , Plant Leaves/chemistry , Photosynthesis , Fluorescence , Chlorophyll/analysis
19.
Langmuir ; 38(43): 13109-13120, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36264640

ABSTRACT

Photocatalytic degrading pollutants driven by visible-light irradiation has attracted tremendous attention. One strategy of preparing carbonized cellulose nanofibrils/Ti3C2Tx MXene/g-C3N4 (CMCN) as a photocatalyst was developed. The as-prepared CMCN was comprehensively characterized in terms of the chemical composition, chemical and crystal structure, morphology, and photoelectrochemical properties. The CMCN was explored as a photocatalyst and exhibited good photocatalytic performance in degrading MB (96.5%), RhB (95.4%), and TC (86.5%) under visible-light conditions. In addition, the CMCN as a photocatalyst exhibited good reusability and stability. It is found that the incorporation of cellulose nanofibrils provided a high carbon content, a high porosity, and a large specific surface area, enhanced the electron transfer, improved the photocatalytic performance, and ensured a semiconductor with a high stability. It is believed that this study would provide an effective approach to preparing a photocatalyst and broaden the potential application of cellulose nanofibrils in photocatalysis.


Subject(s)
Cellulose , Titanium , Catalysis , Light , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...