Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785151

ABSTRACT

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Subject(s)
Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
2.
Orthod Craniofac Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646929

ABSTRACT

OBJECTIVE: This retrospective single-centre study aimed to compare the efficacy of maxillary second molar intrusion with two different approaches, miniscrew-assisted molar intrusion and traditional segmental archwire intrusion, and to compare orthodontically induced external apical root resorption (OIERR) during intrusion between two groups via cone beam computed tomography (CBCT). MATERIALS AND METHODS: A total of 40 adult patients (33.6 ± 10.3 years old) with supraerupted maxillary second molars due to the loss of antagonistic teeth were recruited, with 20 patients in each group. A segmental archwire with adjacent teeth as an anchorage was used in the control group, and 60-100 g of intrusive force was applied by using miniscrews in the experimental group to intrude the overerupted molars. Full-volume CBCT was performed before and after intrusion, and the amount of intrusion and extent of OIERR of the overerupted molars were compared between the two groups. RESULTS: Supraerupted maxillary second molars could be successfully intruded in an average of 5 months. There was more intrusive movement of the buccal and palatal cusps in the mininscrew group than that in the segmental archwire group (P < .05). The intrusive amount of palatal cusp was 3.67 ± 1.13 mm in the miniscrew group and 2.38 ± 0.74 mm in the segmental archwire group. More palatal OIERR was observed in the miniscrew group (30.3 ± 11.6 mm3) than in the segmental archwire group (21.0 ± 8.66 mm3) (P = .0063). There was no significant difference in OIERR between the two groups for mesial and distal buccal roots (P > .05). CONCLUSION: Miniscrews help effectively with supraerupted maxillary second molar intrusion, especially for palatal cusps. There was more OIERR in the palatal root when using miniscrews compared to the segmental archwire approach.

3.
Oral Radiol ; 40(1): 58-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773481

ABSTRACT

OBJECTIVE: This retrospective study aimed to analyze the anatomical structure of the mandibular buccal shelf (MBS) in adolescents and adults with different vertical patterns to determine the optimal location for miniscrew insertion in orthodontic treatment. METHODS: Cone-beam computed tomography (CBCT) scans of 230 patients were utilized for measurements. The morphology and thickness of alveolar bone at the MBS were measured. Two-way ANOVA and regression analysis were conducted to analyze the influencing factors on alveolar bone and cortical bone thickness. RESULTS: Age had a significant effect on alveolar bone thickness (level I: F = 62.449, level II: F = 18.86, p < 0.001), cortical bone thickness (level II: F = 18.86, p < 0.001), alveolar bone tilt (F = 6.267, p = 0.013), and second molar tilt (F = 6.693, p = 0.01). Different vertical patterns also influenced alveolar bone thickness (level I: F = 20.950, level II: F = 28.470, p < 0.001), cortical bone thickness (level I: F = 23.911, level II: F = 23.370, p < 0.001), and alveolar bone tilt (F = 27.046, p < 0.001). As age increased, the alveolar bone thickness at level I decreased by 0.096 mm and at level II decreased by 0.073 mm. Conversely, the thickness of alveolar bone at level I and level II increased by 0.06 mm and 0.075 mm, respectively. The cortical bone thickness at level I and level II increased by 0.024 mm and 0.29 mm, respectively. However, the alveolar bone thickness decreased by 0.931 mm and 1.545 mm at level I and level II, and the cortical bone thickness decreased by 0.542 mm and 0.640 mm at level I and level II, respectively. CONCLUSION: Age, different vertical patterns, alveolar bone inclination, and different shapes of MBS significantly affected the thickness of alveolar bone and cortical bone in the MBS area. Notably, only alveolar bone thickness and cortical bone thickness at level II were affected by age and different vertical patterns simultaneously. These findings can provide valuable insights for orthodontic practitioners in selecting the most suitable location for miniscrew insertion during treatment planning.


Subject(s)
Spiral Cone-Beam Computed Tomography , Adult , Humans , Adolescent , Retrospective Studies , Mandible/diagnostic imaging , Mandible/anatomy & histology , Cone-Beam Computed Tomography/methods , Molar
4.
BMC Oral Health ; 23(1): 820, 2023 10 29.
Article in English | MEDLINE | ID: mdl-37899429

ABSTRACT

OBJECTIVE: This study aims to assess the short- and long-term changes in the upper airway and alar width after mini-implant -assisted rapid palatal expansion (MARPE) in nongrowing patients. METHODS: Five electronic databases (PubMed, Scopus, Embase, Web of Science, and Cochrane Library) were searched up to 2 August, 2023 based on the PICOS principles. The main outcomes were classified into three groups: 1) nasal cavity changes, 2) upper airway changes and 3) alar changes. The mean difference (MD) and 95% confidence intervals (CI) were used to assess these changes. Heterogeneity tests, subgroup analyses, sensitivity analyses, and publication bias were also analyzed. RESULT: Overall, 22 articles were included for data analysis. Nasal cavity width (WMD: 2.05 mm; 95% CI: 1.10, 3.00) and nasal floor width (WMD: 2.13 mm; 95% CI: 1.16, 3.11) increased significantly. While palatopharyngeal volume (WMD: 0.29 cm3, 95% CI: -0.44, 1.01), glossopharyngeal volume (WMD: 0.30 cm3, 95% CI: -0.29, 0.89) and hypopharyngeal volume (WMD: -0.90 cm3; 95% CI: -1.86, 0.06) remained unchanged, nasal cavity volume (WMD: 1.24 cm3, 95% CI: 0.68, 1.81), nasopharyngeal volume (MD: 0.75 cm3, 95% CI: 0.44, 1.06), oropharyngeal volume (WMD: 0.61 cm3, 95% CI: 0.35, 0.87), and total volume of the upper airway (WMD: 1.67 cm3, 95% CI: 0.68, 2.66) increased significantly. Alar width (WMD: 1.47 mm; 95% CI: 0.40, 2.55) and alar base width (WMD: 1.54 mm; 95% CI: 1.21, 1.87) also increased. CONCLUSION: MARPE can increase nasal cavity width, nasal cavity volume, nasopharyngeal volume and oropharyngeal volume for nongrowing patients, but has no significant effect on hypopharyngeal volume. In addition, the alar width also increased. However, the studies included in this meta-analysis were mainly retrospective, nonrandomized and small in number, so the findings should be interpreted with caution and high-quality RCTs need to be studied.


Subject(s)
Dental Implants , Palatal Expansion Technique , Humans , Retrospective Studies , Palatal Expansion Technique/adverse effects , Nose , Nasal Cavity , Maxilla , Cone-Beam Computed Tomography
5.
PLoS One ; 17(9): e0274394, 2022.
Article in English | MEDLINE | ID: mdl-36094945

ABSTRACT

Aspergillus oryzae is widely used in industrial applications, which always encounter changes within multiple environmental conditions during fermentation, such as temperature stress. However, the molecular mechanisms by which A. oryzae protects against temperature stress have not been elucidated. Therefore, this study aimed to characterize the fermentative behavior, transcriptomic profiles, and metabolic changes of A. oryzae in response to temperature stress. Both low and high temperatures inhibited mycelial growth and conidial formation of A. oryzae. Transcriptomic analysis revealed that most differentially expressed genes (DEGs) were involved in sugar metabolism and lipid metabolism under temperature stress. Specifically, the DEGs in trehalose synthesis and starch metabolism were upregulated under low-temperature stress, while high temperatures inhibited the expression of genes involved in fructose, galactose, and glucose metabolism. Quantitative analysis of intracellular sugar further revealed that low temperature increased trehalose accumulation, while high temperature increased the contents of intracellular trehalose, galactose, and glucose, consistent with transcriptome analysis. In addition, most DEGs involved in lipid metabolism were significantly downregulated under low-temperature stress. Furthermore, the metabolomic analysis revealed that linoleic acid, triacylglycerol, phosphatidylethanolamine, and phosphoribosyl were significantly decreased in response to low-temperature stress. These results increase our understanding of the coping mechanisms of A. oryzae in response to temperature stress, which lays the foundation for future improvements through genetic modification to enhance A. oryzae against extreme temperature stress.


Subject(s)
Aspergillus oryzae , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Galactose/metabolism , Gene Expression Profiling , Lipid Metabolism/genetics , Sugars/metabolism , Temperature , Transcriptome , Trehalose/metabolism
6.
Arch Microbiol ; 204(8): 477, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35829968

ABSTRACT

Inositol phosphorylceramide (IPC) participates in hyphal growth and serves as a signaling molecule that enables fungi to adapt to diverse environments. Here, a gene, encodes IPC synthase, was identified from the Aspergillus oryzae 3.042 genome and designated AoAur1. The characteristics, phylogenetic evolution, and resistance to aureobasidin A of AoAur1 were analyzed. The expression pattern of AoAur1 was markedly downregulated under temperature stress. Additionally, an RNAi-AoAur1 strain in which the AoAur1 expression was inhibited had mycelial that grew more quickly, had a higher frequency of hyphal fusion, and was more resistant to high-temperature stress than the control. Gene expression profiles showed that the genes related to IPC biosynthesis were obviously downregulated, while AoCerS, which participates in dihydroceramide biosynthesis, increased in the RNAi-AoAur1 strain at the three temperature treatments. A metabolomic analysis revealed that the intracellular IPC content decreased, and the accumulation of dihydroceramide and galactosylceramide increased significantly in the RNAi-AoAur1 strain. Thus, the inhibition of AoAur1 reduced IPC level followed by an increase in the contents of dihydroceramide and galactosylceramide that promote mycelial growth and the formation of spores in the RNAi-AoAur1 strain. Interestingly, the inhibition of AoAur1 also induced the expression of hyphal fusion-related genes, which promote hyphal fusion, thus, contributing to the transduction of stress signal to enhance the ability of cells to adapt to temperature stress. Our results demonstrated that the downregulation of AoAur1 and a decrease in the accumulation of IPC is one of the mechanisms that enables A. oryzae to adapt low- and high-temperature stress.


Subject(s)
Aspergillus oryzae , Adaptation, Physiological , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Galactosylceramides/metabolism , Phylogeny , Temperature
7.
Int J Comput Dent ; 25(2): 201-219, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35851357

ABSTRACT

Completely digital design/completely digital manufacturing (CDD/CDM) workflows have been widely used in orthodontic and orthognathic treatments. This case report introduces a CDD/CDM workflow consisting of clear aligners and virtual planning for a surgery-first approach (SFA) in a patient with a skeletal Class III malocclusion. Following a shortened treatment time of 5 months, the patient's facial appearance improved significantly, and well-balanced occlusion was obtained. SFAs with clear aligners can enable patients to achieve complete esthetic satisfaction during the therapeutic period. The CDD/CDM workflow provided accurate results, improved the clinical outcome, and reduced treatment time.


Subject(s)
Malocclusion, Angle Class III , Orthognathic Surgical Procedures , Esthetics, Dental , Humans , Malocclusion, Angle Class III/surgery , Orthognathic Surgical Procedures/methods , Workflow
8.
Korean J Orthod ; 51(5): 321-328, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34556586

ABSTRACT

OBJECTIVE: To examine the accuracy of computer-aided intraoperative navigation (Ci-Navi) in bimaxillary orthognathic surgery by comparing preoperative planning and postoperative outcome. METHODS: The study comprised 45 patients with congenital dentomaxillofacial deformities who were scheduled to undergo bimaxillary orthognathic surgery. Virtual bimaxillary orthognathic surgery was simulated using Mimics software. Intraoperatively, a Le Fort I osteotomy of the maxilla was performed using osteotomy guide plates. After the Le Fort I osteotomy and bilateral sagittal split ramus osteotomy of the mandible, the mobilized maxilla and the distal mandibular segment were fixed using an occlusal splint, forming the maxillomandibular complex (MMC). Realtime Ci-Navi was used to lead the MMC in the designated direction. Osteoplasty of the inferior border of the mandible was performed using Ci-Navi when facial symmetry and skeletal harmony were of concern. Linear and angular distinctions between preoperative planning and postoperative outcomes were calculated. RESULTS: The mean linear difference was 0.79 mm (maxilla: 0.62 mm, mandible: 0.88 mm) and the overall mean angular difference was 1.20°. The observed difference in the upper incisor point to the Frankfort horizontal plane, midfacial sagittal plane, and coronal plane was < 1 mm in 40 cases. CONCLUSIONS: This study demonstrates the role of Ci-Navi in the accurate positioning of bone segments during bimaxillary orthognathic surgery. Ci-Navi was found to be a reliable method for the accurate transfer of the surgical plan during an operation.

9.
Front Microbiol ; 12: 690211, 2021.
Article in English | MEDLINE | ID: mdl-34367090

ABSTRACT

Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.

10.
J Endod ; 47(7): 1118-1125, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33895237

ABSTRACT

INTRODUCTION: Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are considered important mediators of the periapical immune response to infection. This study aimed to clarify the putative relationship between MMPs and TIMPs by elucidating the activity of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 in the temporal development of apical periodontitis (AP) in mice. METHODS: AP was induced in the lower first molars of 30 male Kunming mice. The animals were randomly killed at 0, 7, 14, 28, 60, and 90 days after pulp exposure. The jaws were removed and subjected to quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. RESULTS: The MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 messenger RNA and protein expression levels increased with periapical inflammation progression (P < .05). The MMP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2 messenger RNA and protein expression levels increased during the acute and chronic stages of periapical lesions, with less MMP-2 and MMP-9 expression levels at the chronic stage (P < .05). The MMP-8 expression increased at the chronic stage of inflammation (P < .05) but not at the acute stage. Immunostained MMP-2 and TIMP-1 were observed in all experimental periods. CONCLUSIONS: MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were expressed in all periapical samples with varying levels between them. MMP expression could be related to TIMP expression in the temporal development of AP.


Subject(s)
Periapical Periodontitis , Tissue Inhibitor of Metalloproteinase-1 , Animals , Inflammation , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9 , Matrix Metalloproteinases/genetics , Mice , Tissue Inhibitor of Metalloproteinase-1/genetics
11.
AMB Express ; 11(1): 56, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33876331

ABSTRACT

GATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillus oryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A. oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A. oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein-protein interaction network of A. oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A. oryzae.

12.
Front Microbiol ; 12: 638096, 2021.
Article in English | MEDLINE | ID: mdl-33643273

ABSTRACT

Filamentous fungi possess the capacity to produce a wide array of secondary metabolites with diverse biological activities and structures, such as lovastatin and swainsonine. With the advent of the post-genomic era, increasing amounts of cryptic or uncharacterized secondary metabolite biosynthetic gene clusters are continually being discovered. However, owing to the longstanding lack of versatile, comparatively simple, and highly efficient genetic manipulation techniques, the broader exploration of industrially important secondary metabolites has been hampered thus far. With the emergence of CRISPR/Cas9-based genome editing technology, this dilemma may be alleviated, as this advanced technique has revolutionized genetic research and enabled the exploitation and discovery of new bioactive compounds from filamentous fungi. In this review, we introduce the CRISPR/Cas9 system in detail and summarize the latest applications of CRISPR/Cas9-mediated genome editing in filamentous fungi. We also briefly introduce the specific applications of the CRISPR/Cas9 system and CRISPRa in the improvement of secondary metabolite contents and discovery of novel biologically active compounds in filamentous fungi, with specific examples noted. Additionally, we highlight and discuss some of the challenges and deficiencies of using the CRISPR/Cas9-based genome editing technology in research on the biosynthesis of secondary metabolites as well as future application of CRISPR/Cas9 strategy in filamentous fungi are highlighted and discussed.

13.
Front Immunol ; 12: 606043, 2021.
Article in English | MEDLINE | ID: mdl-33717086

ABSTRACT

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug effect. There are multiple hypotheses to explain the development of MRONJ. Reduced bone remodeling and infection or inflammation are considered central to the pathogenesis of MRONJ. In recent years, increasing evidence has shown that bisphosphonates (BPs)-mediated immunity dysfunction is associated with the pathophysiology of MRONJ. In a healthy state, mucosal immunity provides the first line of protection against pathogens and oral mucosal immune cells defense against potentially invading pathogens by mediating the generation of protective immunoinflammatory responses. In addition, the immune system takes part in the process of bone remodeling and tissue repair. However, the treatment of BPs disturbs the mucosal and osteo immune homeostasis and thus impairs the body's ability to resist infection and repair from injury, thereby adding to the development of MRONJ. Here, we present the current knowledge about immunity dysfunction to shed light on the role of local immune disorder in the development of MRONJ.


Subject(s)
Disease Susceptibility/immunology , Drug-Related Side Effects and Adverse Reactions/etiology , Jaw/drug effects , Jaw/pathology , Osteonecrosis/etiology , Animals , Biomarkers , Bone Density Conservation Agents/adverse effects , Cytokines/biosynthesis , Diphosphonates/adverse effects , Drug-Related Side Effects and Adverse Reactions/metabolism , Drug-Related Side Effects and Adverse Reactions/pathology , Humans , Immunity, Mucosal , Inflammation Mediators/metabolism , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Mucous Membrane/pathology , Osteogenesis , Osteonecrosis/metabolism , Osteonecrosis/pathology , Signal Transduction , Wound Healing
14.
J Craniofac Surg ; 32(6): 2205-2209, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33538444

ABSTRACT

ABSTRACT: Accurate application of the preoperative surgical plan in actual surgical settings is of paramount importance in orthognathic surgery. This randomized controlled clinical trial aimed to evaluate the accuracy of computer-aided intraoperative navigation (Ci-Navi) compared with that of conventional navigation methods in bimaxillary orthognathic surgery. Fifty-two patients were randomly divided into 2 groups. Group A (n = 26) patients underwent surgery assisted with Ci-Navi and group B (n = 26) patients underwent surgery assisted with conventional intraoperative navigation methods. During the operation, after LeFort I osteotomy, the mobile maxilla was repositioned to the designated position either using assistance from real-time Ci-Navi (group A) or using an intermediate splint (group B). Intra- and intergroup linear and angular differences between preoperative planning and postoperative outcomes were calculated. In group A, the overall mean linear difference was 0.79 mm (0.62 mm for the maxilla and 0.88 mm for the mandible) and the overall mean angular difference was 1.20°. In 23 cases, the difference from the upper incisor point to the Frankfort horizontal plane, midfacial sagittal plane, and coronal plane was less than 1 mm. In group B, the overall mean linear difference was 1.98 mm (1.76 mm for the maxilla and 2.02 mm for the mandible) and the overall mean angular difference was 2.08°. The difference from the upper incisor point to the Frankfort horizontal plane, midfacial sagittal plane, and coronal plane was less than 1 mm in 15 cases. This study demonstrates the utility of Ci-Navi is superior to the conventional methods in aiding the accurate repositioning of bony segments in bimaxillary orthognathic surgery.


Subject(s)
Orthognathic Surgery , Orthognathic Surgical Procedures , Surgery, Computer-Assisted , Computers , Humans , Imaging, Three-Dimensional , Maxilla/diagnostic imaging , Maxilla/surgery
15.
Am J Orthod Dentofacial Orthop ; 159(4): 435-442, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33573896

ABSTRACT

INTRODUCTION: The purpose of this reseach was to compare the effects of different periodic periodontal scaling protocols on the periodontal health of adolescents with fixed orthodontic appliances by assessing the aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels in gingival crevicular fluid and periodontal clinical indexes in a prospective cohort study. METHODS: Forty-eight adolescents were divided into 3 groups according to the interval of periodontal scaling (group A: once a month; group B: once every 3 months; group C: once every 6 months). The AST and ALP levels in the gingival crevicular fluid were measured before orthodontic treatment (T0) and at 1 (T1), 3 (T2), 6 (T3), and 9 (T4) months during orthodontic treatment. Periodontal clinical indexes (plaque index [PI], gingival index [GI], and probing depth) were also assessed. RESULTS: At T2, significantly lower AST and ALP levels were observed in group A than in groups B and C (P <0.05). At T3 and T4, lower AST and ALP levels were detected in groups A and B than in group C (P <0.05), and there was no significant difference between the A and B groups at T4 (P >0.05). At T2, the PI and GI were increased in groups B and C compared with group A, and at T3 and T4, significantly lower PI and GI values were observed in groups A and B than in group C (P <0.05). CONCLUSIONS: Periodontal scaling promotes the oral hygiene of adolescents undergoing fixed orthodontic treatment, and periodontal scaling protocols administered monthly and once every 3 months are better for controlling periodontal health than treatments administered once every 6 months.


Subject(s)
Oral Hygiene , Orthodontic Appliances, Fixed , Adolescent , Dental Plaque Index , Gingival Crevicular Fluid , Humans , Orthodontic Appliances/adverse effects , Periodontal Index , Prospective Studies
16.
J Oral Pathol Med ; 50(7): 660-667, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33501755

ABSTRACT

BACKGROUND: Tumor metastasis seriously affects the therapeutic effect and prognosis of cancer patients. Here, we studied the role of has_circ_0000378 (circ-LRP6) in oral squamous cell carcinoma (OSCC) metastasis to explore new ideas and schemes for clinical treatment. METHODS: The expressions of circ-LRP6 in OSCC and normal tissues from matched controls were measured by real-time PCR (RT-PCR). Levels of epithelial-mesenchymal transition (EMT) transcription factors, P62 and LC3B, were determined by Western blot analysis and immunofluorescence (IF) assay. Furthermore, we evaluated the effects of circ-LRP6 downregulation on migration, invasion, and autophagy using CCK8, transwell assays, transmission electron microscopy (TEM), and immunofluorescence (IF) assay. RESULTS: The expression of circ-LRP6 in OSCC tissues was high. Downregulation of circ-LRP6 reduced the EMT process of SCC-15 cells, as evidenced by increased E-cadherin and decreased vimentin and Zeb1 levels. Downregulation of circ-LRP6 also decreased autophagy as shown by increased levels of P62 and decreased LC3B in SCC-15 cells. Autophagy revulsant rapamycin (RAPA) rescued the inhibitory effect of circ-LRP6 on LC3B, vimentin, and Zeb1. CONCLUSIONS: circ-LRP6 promoted EMT and autophagy of OSCC and increased autophagy could rescue EMT in OSCC cells inhibited by circ-LRP6 siRNA.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , RNA, Circular , Autophagy , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mouth Neoplasms/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics
17.
Oral Radiol ; 37(2): 209-217, 2021 04.
Article in English | MEDLINE | ID: mdl-32240493

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the relationship between the dental calcification stage (DCS) of the mandibular teeth and the cervical vertebral maturation stage (CVMS) in patients with unilateral complete cleft lip and palate (UCLP). METHODS: One hundred sixty-two UCLP patients (100 males and 62 females) between 8-16 years old were included in this study. The DCS was estimated by the Demirjian method and was converted to the dental age (DA). The CVMS was evaluated by the Baccetti method. The DA of mandibular teeth on two sides of the cleft were analyzed using a t-test. Spearman correlation was used to study the association between CVMS and DCS. The correlation coefficient between the two sides of the cleft was then compared. RESULTS: The total DA was significantly smaller on the cleft side than on the noncleft side in males (p = 0.022). The Spearman rank correlation coefficient revealed a significant correlation between the DCS of each examined tooth and the CVMS (r = 0.627-0.793 in males and r = 0.806-0.899 in females). Additionally, the correlation of the two sides was not significantly different (p > 0.05). The DCS of the first premolar showed the strongest correlation with the CVMS. CONCLUSION: The results confirm the utility of the DCS on both sides of the mandible in male UCLP patients as a simple first-level diagnostic test to evaluate growth and development. The findings also indicate that both the DCS and the CVMS should be assessed if the maturity stage of a growing UCLP patient is relevant to clinical practice.


Subject(s)
Cleft Lip , Cleft Palate , Adolescent , Bicuspid , Cervical Vertebrae/diagnostic imaging , Child , Female , Humans , Male
18.
Int J Genomics ; 2020: 7146701, 2020.
Article in English | MEDLINE | ID: mdl-33224969

ABSTRACT

Sugar transporter (SUT) genes are associated with multiple physiological and biochemical processes in filamentous fungi, such as the response to various stresses. However, limited systematic analysis and functional information of SUT gene family have been available on Aspergillus oryzae (A. oryzae). To investigate the potential roles of SUTs in A. oryzae, we performed an integrative analysis of the SUT gene family in this study. Based on the conserved protein domain search, 127 putative SUT genes were identified in A. oryzae and further categorized into eight distinct subfamilies. The result of gene structure and conserved motif analysis illustrated functional similarities among the AoSUT proteins within the same subfamily. Additionally, expression profiles of the AoSUT genes at different growth stages elucidated that most of AoSUT genes have high expression levels at the stationary phase while low in the adaptive phase. Furthermore, expression profiles of AoSUT genes under salt stress showed that AoSUT genes may be closely linked to salt tolerance and involved in sophisticated transcriptional process. The protein-protein interaction network of AoSUT propounded some potentially interacting proteins. A comprehensive overview of the AoSUT gene family will offer new insights into the structural and functional features as well as facilitate further research on the roles of AoSUT genes in response to abiotic stresses.

19.
World J Microbiol Biotechnol ; 36(9): 136, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32783085

ABSTRACT

Glycerol dehydrogenase has been identified and characterized functionally in many species. However, little is known about glycerol dehydrogenase genes and their functions in Aspergillus oryzae. Here, a total of 45 glycerol dehydrogenase genes in Aspergillus oryzae were identified and renamed from AoGld1 to AoGld45 according to their chromosome distribution. They were classified into three groups based on phylogenetic analysis. Synteny analysis revealed that thirteen AoGld genes are conserved among Aspergillus species. Promoter analysis displayed that AoGld3 and AoGld13 harbored multiple binding elements of GATA-type transcription factors and zinc-finger protein msnA that were involved in nitrogen and kojic acid metabolism, respectively. Moreover, the AoGld3 deletion strain Δgld3 was generated by the CRISPR/Cas9 system, which had no visible growth defects compared with the control wild-type strain under the control and osmotic stress treatments. However, disruption of AoGld3 led to the inhibition of kojic acid production, and the expression of kojA, kojR was down-regulated in the Δgld3 strain. Furthermore, when kojA or kojR was overexpressed in the Δgld3 strain, the yield of kojic acid was restored, suggesting that AoGld3 is involved in kojic acid production through affecting the expression of kojR and kojA. Taken together, these findings provide new insights into our understanding of glycerol dehydrogenase and establish foundation for further study of their roles in Aspergillus oryzae.


Subject(s)
Aspergillus oryzae/enzymology , Aspergillus oryzae/genetics , Pyrones/metabolism , Sugar Alcohol Dehydrogenases/genetics , Sugar Alcohol Dehydrogenases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Nitrogen/metabolism , Phylogeny , Promoter Regions, Genetic
20.
J Clin Periodontol ; 47(4): 451-460, 2020 04.
Article in English | MEDLINE | ID: mdl-31976565

ABSTRACT

AIMS: To explore the involvement of NOD-like receptor protein 3 (NLRP3) inflammasome and M1 macrophage in root resorption (RR). METHODS: A rat RR model was established by excessive orthodontic force. After different force-loading time, the expression levels of NLRP3, caspase-1, and interleukin-1ß (IL-1ß) and distribution of M1 macrophages were analysed by immunohistochemistry and immunofluorescence staining in vivo. Then, the mechanism of NLRP3 activation was further verified by macrophage and human periodontal ligament cell (hPDLC) co-culture system in vitro. The production levels of NLRP3, caspase-1, pro-caspase-1, and IL-1ß in M1 macrophages in the co-culture system were detected by Western blot, and the polarization of CD68+IL-1ß+ M1 macrophages was detected by immunofluorescence staining. RESULTS: In the rat RR model, NLRP3, caspase-1, IL-1ß, and M1 macrophages were expressed in periodontal ligament, mainly concentrated around RR areas. Force-pre-treated hPDLCs promoted M1 macrophage polarization and the production of NLRP3, caspase-1, and IL-1ß in M1 macrophages in co-culture system. When MCC950, an inhibitor of NLRP3 inflammasome, was added, NLRP3 activation and M1 macrophage polarization were inhibited. CONCLUSIONS: In periodontal tissues, hPDLCs stimulated by force promoted M1 macrophage polarization and increased IL-1ß production by activating NLRP3 inflammasome in M1 macrophages, thus initiating the occurrence of RR.


Subject(s)
Inflammasomes , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Root Resorption , Animals , Humans , Interleukin-1beta/metabolism , Macrophages , NLR Proteins , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...