Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 467: 133630, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330643

ABSTRACT

Nitrogen fertilizer supports global food production, but its manufacturing results in substantial ammonia nitrogen (AN) contaminated sites which remain largely unexplored. In this study, ten representative AN contaminated sites were investigated, covering a wide range of subsurface pH, temperature, and AN concentration. A total of 7232 soil samples and 392 groundwater samples were collected to determine the concentration levels, migration patterns, and accurate health risks of AN. The results indicated that AN concentrations in soil and groundwater reached 12700 mg/kg and 12600 mg/L, respectively. AN concentrations were higher in production areas than in non-production areas, and tended to migrate downward from surface to deeper soil. Conventional risk assessment based on AN concentration identified seven out of the ten sites presenting unacceptable risks, with remediation costs and CO2 emissions amounting to $1.67 million and 17553.7 tons, respectively. A novel risk assessment model was developed, which calculated risks based on multiplying AN concentration by a coefficient fNH3 (the ratio of NH3 to AN concentration). The mean fNH3 values, primarily affected by subsurface pH, varied between 0.02 and 0.25 across the ten sites. This new model suggested all investigated sites posed acceptable health risks related to AN exposure, leading to their redevelopment without AN-specific remediation. This research offers a thorough insight into AN contaminated site, holds great realistic significance in alleviating global economic and climate pressures, and highlights the need for future research on refined health risk assessments for more contaminants.


Subject(s)
Ammonia , Nitrogen , Humans , Risk Assessment , Soil , Hydrogen-Ion Concentration
2.
Environ Sci Pollut Res Int ; 31(14): 21881-21893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38400974

ABSTRACT

The contamination of abandoned chromium slag-contaminated sites poses serious threats to human health and the environment. Therefore, improving the understanding of their distribution characteristics and health risks by multiple information is necessary. This study explored the distribution, accumulation characteristic, and the role in the migration process of chromium. The results showed that the contents of total Cr and Cr (VI) ranged from 12.00 to 7400.00 mg/kg, and 0.25 to 2160.00 mg/kg, respectively. The average contents of both total Cr and Cr (VI) reached the highest value at the depth of 7-9 m, where the silt layer retaining total Cr and Cr (VI) was. The spatial distribution analysis revealed that the total contamination area percentages of total Cr and Cr (VI) reached 7.87% and 90.02% in the mixed fill layer, and reduced to 1.21% and 34.53% in the silty layer, and the same heavily polluted areas were located in the open chromium residue storage. Soil pH and moisture content were the major factors controlling the migration of total Cr and Cr(VI) in soils. Results of probabilistic health risk assessment revealed that carcinogenic risk was negligible for adults and children, and the sensitive analysis implied that the content of Cr(VI) was the predominant contributor to carcinogenic risk. The combination of chemical reduction and microbial remediation could be the feasible remediation strategy for soil Cr(VI) pollution. Overall, this study provides scientific information into the chromium post-remediation and pollution management for various similar chromium-contaminated sites.


Subject(s)
Soil Pollutants , Humans , Child , Adult , Soil Pollutants/analysis , Chromium/analysis , Soil , China
3.
Ecotoxicol Environ Saf ; 273: 116133, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394758

ABSTRACT

Nitrogen fertilizer supports agricultural intensification, but its manufacturing results in substantial contaminated sites. Ammonia nitrogen is the main specific pollutant in retired nitrogen fertilizer sites with potential human health and odor risks. However, few studies focus on ammonia nitrogen risk assessment at contaminated sites, particularly considering its solid-liquid partitioning process (Kd) and ammonium/ammonia equilibrium process (R) in the soil. This study took a closed nitrogen fertilizer factory site as an example and innovatively introduced Kd and R to scientifically assess the human health and odor risk of ammonia nitrogen. The risk control values (RCVs) of ammonia nitrogen based on human health and odor risk were also derived. The maximum concentration of ammonia nitrogen was 3380 mg/kg in the unsaturated soil, which was acceptable for human health because the health RCVs were 5589 ∼ 137,471 mg/kg in various scenarios. However, odor risk was unacceptable for RCVs were 296 ∼ 1111 mg/kg under excavation scenarios and 1118 ∼ 35,979 mg/kg under non-excavation scenarios. Of particular concern, introducing Kd and R in calculation increased the human health and odor RCVs by up to 27.92 times. Despite the advancements in ammonia risk assessment due to the introduction of Kd and R, odor risk during excavation remains a vital issue. These findings inform a more scientific assessment of soil ammonia risk at contaminated sites and provide valuable insights for the management and redevelopment of abandoned nitrogen fertilizer plant sites.


Subject(s)
Ammonia , Ammonium Compounds , Humans , Ammonia/analysis , Soil , Nitrogen/analysis , Fertilizers/analysis , Odorants , Agriculture/methods , China
4.
J Hazard Mater ; 468: 133782, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387175

ABSTRACT

Determining the priority control source and pollutant is the key for the eco-health protection and risk management around gold smelting area. To this end, a case study was conducted to explore the pollution characteristics, source apportionment, ecological risk and human health risk of toxic metals (TMs) in agricultural soils surrounding a gold smelting enterprise. Three effective receptor models, including positive matrix factorization model (PMF), ecological risk assessment (ERA), and probabilistic risk assessment (PRA) have been combined to apportion eco-human risks for different targets. More than 95.0% of samples had a Nemerow pollution index (NPI) > 2 (NPImean=4.27), indicating moderately or highly soil TMs contamination. Four pollution sources including gold smelting activity, mining source, agricultural activity and atmosphere deposition were identified as the major sources, with the contribution rate of 17.52%, 44.16%, 13.91%, and 24.41%, respectively. For ecological risk, atmosphere deposition accounting for 30.8% was the greatest contributor, which was mainly loaded on Hg of 51.35%. The probabilistic health risk assessment revealed that Carcinogenic risks and Non-carcinogenic risks of all population were unacceptable, and children suffered from a greater health risk than adults. Gold smelting activity (69.2%) and mining source (42.0%) were the largest contributors to Carcinogenic risks and Non-carcinogenic risks, respectively, corresponding to As and Cr as the target pollutants. The priority pollution sources and target pollutants were different for the eco-health protection. This work put forward a new perspective for soil risk control and management, which is very beneficial for appropriate soil remediation under limited resources and costs.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Gold , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Risk Assessment , China
5.
Sci Total Environ ; 918: 170506, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38307285

ABSTRACT

Groundwater contamination from abandoned pesticide sites is a prevalent issue in China. To address this problem, natural attenuation (NA) of pollutants has been increasingly employed as a management strategy for abandoned pesticide sites. However, limited studies have focused on the long-term NA process of co-existing organic pollutants in abandoned pesticide sites by an integrated approach. In this study, the NA of benzene, toluene, ethylbenzene, and xylene (BTEX), and chlorobenzenes (CBs) in groundwater of a retired industry in China was systematically investigated during the monitoring period from June 2016 to December 2021. The findings revealed that concentrations of BTEX and CBs were effectively reduced, and their NA followed first-order kinetics with different rate constants. The sulfate-reducing bacteria, nitrate-reducing bacteria, fermenting bacteria, aromatic hydrocarbon metabolizing bacteria, and reductive dechlorinating bacteria were detected in groundwater. It was observed that distinct environmental parameters played a role in shaping both overall and key bacterial communities. ORP (14.72%) and BTEX (12.89%) were the main drivers for variations of the whole and key functional microbial community, respectively. Moreover, BTEX accelerated reductive dechlorination. Furthermore, BTEX and CBs exhibited significant enrichment of 13C, ranging from +2.9 to +27.3‰, demonstrating their significance in situ biodegradation. This study provides a scientific basis for site management.


Subject(s)
Environmental Pollutants , Groundwater , Pesticides , Water Pollutants, Chemical , Benzene/analysis , Toluene/analysis , Xylenes/analysis , Chlorobenzenes/metabolism , Pesticides/analysis , Benzene Derivatives/analysis , Isotopes/analysis , Bacteria/metabolism , Environmental Pollutants/analysis , Biodegradation, Environmental , Water Pollutants, Chemical/analysis
6.
Toxics ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37888718

ABSTRACT

BTEX (benzene, toluene, ethylbenzene, and xylene), as characteristic pollutants in chemical plant sites, are widely present in the environment and pose a serious threat to the health and safety of nearby residents. Studying the spatial distribution characteristics and transport fluxes of BTEX in soil and air at contaminated sites and the health risks they pose to humans is of great significance for fine pollution control and environmental management. This study took a typical decommissioned steel plant as a case study. A total of 23 soil and air samples were collected from different locations to investigate the spatial distribution characteristics of BTEX in soil and air. The transport and fate of BTEX in soil and air were evaluated using the fugacity model, and finally, a human health risk assessment was conducted. The results indicate a relatively severe level of benzene pollution in both soil and air. The maximum exceedance factor of benzene in soil samples is 31.5, with the concentration exceedance depth at 1.5 m. The maximum concentration of benzene in air samples is 4.98 µg·m-3. Benzene, at 5.9% of the site, shows a low flux with negative values, while other components at various locations all exhibit a trend of transport from the soil phase to the atmospheric phase. Benzene is the pollutant that contributes the most to the transport flux from soil to air within the site. The coking area and sewage treatment area are key areas within the steel mill where BTEX accumulate easily in the soil. The non-carcinogenic risk values of the individual components of BTEX in the soil are below the acceptable risk level. However, the carcinogenic risk value of benzene in the children's exposure scenario exceeds the carcinogenic risk level of 10-6. The carcinogenic risk range of various components of BTEX in the air is 2.63 × 10-6~3.88 × 10-5, with 28.6% of the locations exceeding the threshold of 10-6. The range of the total HI (hazard index) is 2.08 × 10-4~1.81 × 10-1, all of which is below the safety threshold of 1. The results of this study will provide scientific support for the fine pollution control and environmental management of industrial contaminated sites with BTEX as their typical pollutants.

7.
Toxics ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37368594

ABSTRACT

Asbestos has been confirmed as a major pollutant in asbestos-mining areas that are located in western China. In general, asbestos-fibre dust will is released into the environment due to the effect of intensive industrial activities and improper environmental management, such that the health of residents in and around mining areas is jeopardised. A typical asbestos mining area served as an example in this study to analyse the content and fibre morphology of asbestos in soil and air samples in the mining area. The effects of asbestos pollution in and around the mining areas on human health were also assessed based on the U.S. Superfund Risk Assessment Framework in this study. As indicated by the results, different degrees of asbestos pollutions were present in the soil and air, and they were mainly concentrated in the mining area, the ore-dressing area, and the waste pile. The concentration of asbestos in the soil ranged from 0.3% to 91.92%, and the concentration of asbestos fibres in the air reached 0.008-0.145 f·cc-1. The results of the scanning-electron microscope (SEM) energy suggested that the asbestos was primarily strip-shaped, short columnar, and granular, and the asbestos morphology of the soils with higher degrees of pollution exhibited irregular strip-shaped fibre agglomeration. The excess lifetime cancer risk (ELCR) associated with the asbestos fibres in the air of the mining area was at an acceptable level (10-4-10-6), and 40.6% of the monitoring sites were subjected to unacceptable non-carcinogenic risks (HQ > 1). Moreover, the waste pile was the area with the highest non-carcinogenic risk, followed by the ore dressing area, a residential area, and a bare-land area in descending order. In the three scenarios of adult offices or residences in the mining area, adults' outdoor activities in the peripheral residence areas, and children's outdoor activities, the carcinogenic-and non-carcinogenic-risk-control values in the air reached 0.1438, 0.2225 and 0.1540 f·cc-1, and 0.0084, 0.0090 and 0.0090 f·cc-1, respectively. The results of this study will lay a scientific basis for the environmental management and governance of asbestos polluted sites in China.

8.
Huan Jing Ke Xue ; 44(4): 2204-2214, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040969

ABSTRACT

In order to identify the contamination and health risks of heavy metals in agricultural soils, a total of 56 surface soil samples (0-20 cm) were collected around a Pb-Zn smelter in Yunnan Province, and six heavy metals (Pb, Cd, Zn, As, Cu, and Hg) and pH were analyzed to assess heavy metal status, ecological risk, and probabilistic health risk. The results revealed that the average contents of six heavy metals (Pb:4413.93 mg·kg-1, Cd:6.89 mg·kg-1, Zn:1672.76 mg·kg-1, As:44.45 mg·kg-1, Cu:47.61 mg·kg-1, and Hg:0.21 mg·kg-1) were higher than their background values in Yunnan Province. Cd had the highest mean geo-accumulation index (Igeo) of 0.24, the highest mean pollution index (Pi) of 30.42, and the greatest average ecological risk index (Er) of 1312.60, indicating that Cd was the primary enriched and highest-ecological risk pollutant. The mean hazard index (HI) through exposure to six HMs was 2.42E-01 and 9.36E-01 for adults and children, respectively, with 36.63% of HI values for children exceeding the risk threshold of 1. Moreover, the mean total cancer risks (TCR) were 6.98E-05 and 5.93E-04 for adults and children, respectively, with 86.85% of TCR values for children exceeding the guideline value of 1E-04. The probabilistic health risk assessment suggested that Cd and As were the main contributors for the non-carcinogenic risks and carcinogenic risks. This work will provide scientific reference for the precise risk management and effective remediation strategy of soil heavy metal pollution in this study area.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Zinc , Soil/chemistry , Lead , Cadmium , Environmental Monitoring , Soil Pollutants/analysis , China , Metals, Heavy/analysis , Risk Assessment , Receptors, Antigen, T-Cell
9.
J Environ Manage ; 336: 117633, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36898240

ABSTRACT

With the development of the economy and the adjustment of urban planning and layout, abandoned pesticide sites are widely distributed in major and medium cities in China. Groundwater pollution of a large number of abandoned pesticide-contaminated sites has caused great potential risks to human health. Up to now, few relevant studies concerned the spatiotemporal variation of risks exposure to multi-pollutants in groundwater using probabilistic methods. In our study, the spatiotemporal characteristics of organics contamination and corresponding health risks in the groundwater of a closed pesticide site were systematically assessed. A total of 152 pollutants were targeted for monitoring over a time span up to five years (i.e., June 2016-June 2020). BTEX, phenols, chlorinated aliphatic hydrocarbons, and chlorinated aromatic hydrocarbons were the main contaminants. The metadata was subjected to health risk assessments using the deterministic and probabilistic methods for four age groups, and the results showed that the risks were highly unacceptable. Both methods showed that children (0-5 years old) and adults (19-70 years old) were the age groups with the highest carcinogenic and non-carcinogenic risks, respectively. Compared with inhalation and dermal contact, oral ingestion was the predominant exposure pathway that contributed 98.41%-99.69% of overall health risks. Spatiotemporal analysis further revealed that the overall risks first increased then decreased within five years. The risk contributions of different pollutants were also found to vary substantially with time, indicating that dynamic risk assessment is necessary. Compared with the probabilistic method, the deterministic approach relatively overestimated the true risks of OPs. The results provide a scientific basis and practical experience for scientific management and governance of abandoned pesticide sites.


Subject(s)
Environmental Pollutants , Groundwater , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Child , Adult , Humans , Infant, Newborn , Infant , Child, Preschool , Young Adult , Middle Aged , Aged , Pesticides/analysis , Solvents , Water Pollutants, Chemical/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , China , Environmental Monitoring
10.
Article in English | MEDLINE | ID: mdl-35954730

ABSTRACT

Chlorinated aliphatic hydrocarbons (CAHs) are widely used in agriculture and industries and have become one of the most common groundwater contaminations. With the excellent performance of the deep learning method in predicting, LSTM and XGBoost were used to forecast dichloroethene (DCE) concentrations in a pesticide-contaminated site undergoing natural attenuation. The input variables included BTEX, vinyl chloride (VC), and five water quality indicators. In this study, the predictive performances of long short-term memory (LSTM) and extreme gradient boosting (XGBoost) were compared, and the influences of variables on models' performances were evaluated. The results indicated XGBoost was more likely to capture DCE variation and was robust in high values, while the LSTM model presented better accuracy for all wells. The well with higher DCE concentrations would lower the model's accuracy, and its influence was more evident in XGBoost than LSTM. The explanation of the SHapley Additive exPlanations (SHAP) value of each variable indicated high consistency with the rules of biodegradation in the real environment. LSTM and XGBoost could predict DCE concentrations through only using water quality variables, and LSTM performed better than XGBoost.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Vinyl Chloride , Biodegradation, Environmental , Vinyl Chloride/metabolism
11.
Article in English | MEDLINE | ID: mdl-35805679

ABSTRACT

The accumulation of nitrogen in groundwater in the industrial plots, especially the high ammonium, can result in a serious threat to the groundwater system in the urban area. This study monitored the dissolved inorganic nitrogen (DIN) of the polluted groundwater four times in one year in a retired nitrogenous fertilizer plant site with a production history of nearly 40 years, to analyze the spatial-temporal characteristics of DIN species (NH4+-N, NO3−-N, and NO2−-N) and the effects of groundwater environment on their transfer and transformation. The results showed that NH4+-N (<0.025 to 1310 mg/L) was the main DIN species (61.38−76.80%) with low mobility, whereas the concentration of NO3−-N and NO2−-N was 0.15−146 mg/L and <0.001−12.4 mg/L, accounting for 22.34−36.07% and 0.53−2.83% of total DIN, respectively. The concentration and proportion of NO3−-N and NO2−-N showed an upward trend with time, posing a threat to the safety of surrounding groundwater, and their high spatial-temporal variation was related to the morphological transformation and the transport. In the wet season, the pH and redox condition benefited the nitrification, and NO3−-N easily migrated from the deep soil solution to groundwater, hence the NO3−-N can be accumulated. Therefore, the analysis of species and behaviors of DIN in shallow groundwater is indispensable for environmental risk assessment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Fertilizers/analysis , Nitrates/analysis , Nitrogen/analysis , Nitrogen Dioxide/analysis , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 846: 157316, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35842168

ABSTRACT

Although biochar (BC) and monitored natural attenuation (MNA) are regarded as green technologies for remediating volatile organic compounds (VOCs) contaminated groundwater, their life cycle environmental impacts and costs have not been systematically quantified. This work assessed the primary and secondary environmental impacts and the cost of three options for remediating the groundwater at a closed pesticide manufacturing plant site, which was contaminated by high levels of multiple VOCs and is undergoing MNA. The studied options include a combination of MNA and BC (MNA + BC), BC, and pump and treat (PT). The environmental impacts were examined through a Life Cycle Assessment (LCA) using the ReCiPe 2016 method. The costs were evaluated using a Life Cycle Cost (LCC) method created in the SimaPro. The LCA results show that the overall environmental impacts follow the sequence of PT > BC > MNA + BC, but MNA + BC shows evident primary impacts. The CO2 eq emissions generated from PT are more than five times of MNA + BC or BC. The cement, electricity, and steel for construction, and the operation energy are the environmental hotspots in PT. In MNA + BC and BC, the electricity for feedstock pyrolysis is the environmental hotspot, while the use of BC by-products to generate heat and power has positive environmental credit that compensates other negative environmental burdens. Incorporating institutional controls, using renewable energy and recycled or alternative materials, and developing BC with superior adsorption capacity are recommended to optimize the remediation strategies. The LCC results show that PT renders the highest cost, with cement and electricity being the two most expensive items. Electricity is the dominant contributor to the costs of MNA + BC and BC, while the avoided heat and power generation can save the cost of other items. Overall, this study provides scientific support to develop and optimize green remediation solutions for VOCs contaminated groundwater.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Volatile Organic Compounds , Charcoal , Environment
13.
Environ Pollut ; 307: 119487, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35597487

ABSTRACT

Smelting activities are considered as the primary cause of heavy metal (HM) accumulation in soils, and the human health around the smelter has been a great concern worldwide. In this study, a total of 242 agricultural soil samples were collected around a large scale Pb/Zn smelter in China, and eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were analyzed to assess HMs status, ecological -health risks, and identify source. Monte Carlo simulation was utilized to evaluate the probabilistic health risks, and positive matrix factorization (PMF) was employed to identify sources. The results revealed the average contents of five heavy metals (Cd 5.28 mg/kg, Pb 203.36 mg/kg, Hg 0.39 mg/kg, Zn 293.45 mg/kg, Cu 37.14 mg/kg) are higher than their background values in Hunan province. Cd had the highest mean pollution index (PI) of 41.8 and the greatest average ecological risk index (Er) of 1256.34, indicating that Cd was the primary enriched pollutant and had a higher ecological risk than other HMs. The mean hazard index (HI) through exposure to eight HMs was 2.95E-01 and 9.74E-01 for adults and children, respectively, with 35.94% of HI values for children exceeding the risk threshold of 1. Moreover, the mean total cancer risks (TCR) were 2.75E-05 and 2.37E-04 for adults and children, respectively, with 75.48% of TCR values for children exceeding the guideline value of 1E-04. In addition, the positive matrix factorization results showed smelting activities, natural sources, agricultural activities and atmospheric deposition were the three sources in soils, with the contribution rate of 48.62%, 22.35%, and 29.03%, respectively. The uncertainty analysis of the PMF indicated that the three-factor solution is reliable. This work will provide scientific reference for the comprehensive prevention of soil HM pollution adjacent to the large smelter.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Adult , Cadmium/analysis , Child , China , Environmental Monitoring , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Receptors, Antigen, T-Cell , Risk Assessment , Soil , Soil Pollutants/analysis , Zinc/analysis
14.
J Environ Manage ; 304: 114228, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34920286

ABSTRACT

Strontium (Sr) is an alkaline earth metal that has adverse effects on bone tissue, but received little attention compared to other often-studied metals. This study analyzed the contents/concentrations of Sr, barium (Ba), sulfate (SO42-), sulfide (S2-), and six common metals in 209 multi-media samples, including slag, soil, groundwater, surface water, and sediment, collected at a large Sr slag pile area. Sr was the dominant chemical of concern (COC) in the soil and groundwater, with contents/concentrations being 35.50-32200 mg/kg and 0.57-152 mg/L, respectively, much higher than those reported in previous research. Contents/concentrations of all COCs in the surface water and sediment were relatively low, except Sr content in the sediment near the slag pile. The LogKd value of Sr was calculated to be lower than those of common metals, indicating relatively high mobility of Sr in the aquatic environment. Contamination assessment using Nemerow index indicated near half of the soil and groundwater sampling locations, especially those within and near the slag pile, were heavily contaminated, and Sr was the dominant COC. The positive matrix factorization model suggested four sources for the COCs in soil, including Sr slag pile/SrCO3 production, agricultural activities, industrial activities, and natural sources, with contribution rates of 66.88%, 5.28%, 7.5%, and 20.34%, respectively. Monte Carlo simulation-based probabilistic health risk assessment revealed that the non-carcinogenic risk of groundwater, and the carcinogenic risk of soil and groundwater, were unacceptable. Notably, Sr was the unique COC posing non-carcinogenic risk among the COCs studied. Our results provide the scientific support needed for managing Sr point source impacted area.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Strontium , Water
15.
Chemosphere ; 255: 126957, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32402885

ABSTRACT

In the soil of contaminated coking sites, polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX) are typical indicator compounds. Generally, PAHs are enriched in the topsoil layer. BTEX, with higher water solubilities and lower organic carbon-water partitioning coefficients (Koc), are distributed deeper than PAHs. However, current models have employed predictions using single compounds to mimic the migration of BTEX at contaminated coking sites. Such models have not considered the influence of the upper soil layer, where PAHs are enriched. An attempt to fill this gap was made by setting up a control soil column experiment in this study. One column was filled with undisturbed soil (column #1) and the other with PAH-contaminated soil (column #2) to simulate the theoretical and actual surface soil layers, respectively. The results showed that in column #2, the toluene gas concentration of the headspace and time required to reach steady state were notably greater than those in column #1. High-throughput sequencing revealed that there were large microbial community structure differences between the two soil columns throughout the experiment, while some genera that degrade toluene with high efficiency emerged noteworthily in column #2. This implied that the upper soil layer enriched with PAHs was conducive to the degradation of toluene vapor. Applying this finding to human health exposure assessment of toluene suggests that the potential exposure level should be reduced from the current predicted level given the unanticipated attenuation at contaminated coking sites.


Subject(s)
Coke , Soil Pollutants/analysis , Toluene/analysis , Benzene/analysis , Benzene Derivatives , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Microbiology , Solubility , Xylenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...