Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Trends Pharmacol Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39003157

ABSTRACT

PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.

2.
Sci Rep ; 14(1): 15298, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961179

ABSTRACT

Within the global architecture, engineering, and construction industry, the use of Building Information Modeling (BIM) technology has significantly expanded. However, given the unique characteristics of road infrastructure, the application of BIM technology is still being explored. This article focuses on the Yuanchen Expressway, exploring innovative applications of BIM technology in comprehensive construction management. The project employs advanced technologies, including BIM, Geographic Information Systems (GIS), and the Internet of Things (IoT), to precisely identify critical nodes and breakthroughs. Supported by a detailed BIM model and a multi-level, diversified digital management platform, the project effectively addresses construction challenges in multiple tunnels, bridges, and complex interchanges, achieving intelligent construction innovation throughout the Yuanchen Expressway with BIM technology. By guiding construction through BIM models, utilizing a BIM+GIS-based management cloud platform system, and employing VR safety briefings, the project effectively reduces the difficulty of communication and coordination in project management, shortens the project measurement cycle, improves on-site work efficiency, and ensures comprehensive control and safety management. This article provides an exemplary case for the application of full-line construction management using BIM technology in the highway sector both in China and globally, offering new perspectives and strategies for highway construction management.

3.
Cell Death Dis ; 15(7): 505, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013891

ABSTRACT

During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.


Subject(s)
Mitophagy , Humans , Animals , Regulated Cell Death , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics
4.
Int J Biol Sci ; 20(8): 2904-2921, 2024.
Article in English | MEDLINE | ID: mdl-38904023

ABSTRACT

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the critical pathological mechanisms of pulmonary hypertension (PH), and therefore is gradually being adopted as an important direction for the treatment of PH. Metallothioneins (MTs) have been reported to be associated with PH, but the underlying mechanisms are not fully understood. Here, we demonstrated that the expression level of metallothionein 3 (MT3) was significantly increased in pulmonary arterioles from PH patients and chronic hypoxia-induced rat and mouse PH models, as well as in hypoxia-treated human PASMCs. Knockdown of MT3 significantly inhibited the proliferation of human PASMCs by arresting the cell cycle in the G1 phase, while overexpression of MT3 had the opposite effect. Mechanistically, we found that MT3 increased the intracellular zinc (Zn2+) concentration to enhance the transcriptional activity of metal-regulated transcription factor 1 (MTF1), which promoted the expression of autophagy-related gene 5 (ATG5), facilitating autophagosome formation. More importantly, MT3-induced autophagy and proliferation of human PASMCs were largely prevented by knockdown of MTF1 and ATG5. Therefore, in this study, we identified MT3-Zinc-MTF1-ATG5 as a novel pathway that affects PASMC proliferation by regulating autophagosome formation, suggesting that MT3 may be a novel target for the treatment of PH.


Subject(s)
Cell Proliferation , Metallothionein 3 , Myocytes, Smooth Muscle , Pulmonary Artery , Zinc , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Animals , Humans , Zinc/metabolism , Mice , Rats , Myocytes, Smooth Muscle/metabolism , Male , Autophagosomes/metabolism , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcription Factors/genetics , Autophagy , Hypertension, Pulmonary/metabolism , Mice, Inbred C57BL , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factor MTF-1 , Metallothionein/metabolism , Metallothionein/genetics
5.
Small ; : e2400300, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923683

ABSTRACT

Retinitis pigmentosa is the main cause of inherited human blindness and is associated with dysfunctional photoreceptors (PRs). Compared with traditional methods, optoelectronic stimulation can better preserve the structural integrity and genetic content of the retina. However, enhancing the spatiotemporal accuracy of stimulation is challenging. Quantum dot-doped ZnIn2S4 microflowers (MF) are utilized to construct a biomimetic photoelectric interface with a 0D/3D heterostructure, aiming to restore the light response in PR-degenerative mice. The MF bio interface has dimensions similar to those of natural PRs and can be distributed within the curved spatial region of the retina, mimicking cellular dispersion. The soft 2D nano petals of the MF provide a large specific surface area for photoelectric activation and simulate the flexibility interfacing between cells. This bio interface can selectively restore the light responses of seven types of retina ganglion cells that encode brightness. The distribution of responsive cells forms a pattern similar to that of normal mice, which may reflect the generation of the initial "neural code" in the degenerative retina. Patch-clamp recordings indicate that the bio interface can induce spiking and postsynaptic currents at the single-neuron level. The results will shed light on the development of a potential bionic subretinal prosthetic toolkit for visual function restoration.

6.
Mikrochim Acta ; 191(7): 379, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856817

ABSTRACT

A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.

7.
Anal Chim Acta ; 1312: 342763, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834278

ABSTRACT

Developing effective electrochemiluminescence (ECL) platforms is always an essential concern in highly sensitive bioanalysis. In this work, a low-triggering-potential ECL sensor was designed for detecting synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) based on a dual-signal amplification strategy. Initially, a probe was created by integrating Ruthenium into the hollow porphyrin-based MOF (PCN-222) structure to decrease the excitation potential and enhance ECL performance without external co-reaction accelerators. Additionally, for the first time, photonic crystals (PCs) assembled from covalent organic frameworks (COFs) were employed to amplify the ECL signal, thereby increasing the photon flux and the loading capacity of the ECL emitter to enhance sensitivity of the sensor. In the presence of the target MDPV, the aptamer labeled with Ferrocene (Fc) experienced conformational changes, causing Fc to approach the luminophore and resulting in ECL quenching. This effect was attributed to aptamer's conformational changes induced by the target, directly correlating with the target concentration. The constructed sensor showed good linearity with the target MDPV concentration, covering a dynamic range from 1.0 × 10-14 to 1.0 × 10-6 g/L and achieved an ultra-low detection limit of 4.79 × 10-15 g/L. This work employed dual amplification strategies to enhance ECL signals effectively, providing a novel method for developing highly responsive and bioactive sensors.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Photons , Pyrrolidines , Ruthenium , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Ruthenium/chemistry , Pyrrolidines/chemistry , Alkaloids/chemistry , Alkaloids/analysis , Limit of Detection
8.
Eur J Pharmacol ; 976: 176698, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38821168

ABSTRACT

Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Myocardial Reperfusion Injury , Sodium-Glucose Transporter 2 Inhibitors , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Animals , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Administration, Oral , Glucagon-Like Peptide-1 Receptor Agonists
9.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38770649

ABSTRACT

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Subject(s)
Histone-Lysine N-Methyltransferase , Hypertension, Pulmonary , Hypoxia , Mitophagy , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , PPAR gamma , Pulmonary Artery , Rats, Sprague-Dawley , Animals , Humans , Male , Mice , Rats , Cell Proliferation , Cells, Cultured , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Hypoxia/complications , Hypoxia/metabolism , Methylation , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , PPAR gamma/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Vascular Remodeling
10.
Bioelectrochemistry ; 158: 108702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38669976

ABSTRACT

The residue of lincomycin in water will not only aggravate the drug resistance of bacteria but also cause damage to the human body through biological accumulation. In this work, an electrochemiluminescence (ECL) aptasensor for the detection of lincomycin was constructed based on polydimethyldiallylammonium chloride (PDDA) functionalized Ce-doped TbPO4 nanowires (PDDA-TbPO4:Ce NWs) and silver nanoparticles (Ag NPs). TbPO4:Ce NWs were used as the luminophore, and PDDA was used to functionalize the luminophore to make the surface of the luminophore positively charged. The negatively charged silver nanoparticles were combined with PDDA-TbPO4:Ce NWs by electrostatic interaction. Ag NPs accelerated the electron transfer rate and promoted the ECL efficiency, which finally increased the ECL intensity of TbPO4:Ce NWs by about 4 times. Under the optimal conditions, the detection limit of the ECL sensor was as low as 4.37 × 10-16 M, and the linear range was 1 × 10 - 15 M to 1 × 10 - 5 M, with good selectivity, stability, and repeatability. The sensor can be applied to the detection of lincomycin in water, and the recovery rate is 97.7-103.4 %, which has broad application prospects.


Subject(s)
Electrochemical Techniques , Limit of Detection , Lincomycin , Luminescent Measurements , Metal Nanoparticles , Silver , Lincomycin/analysis , Silver/chemistry , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Water Pollutants, Chemical/analysis , Nanowires/chemistry , Biosensing Techniques/methods , Quaternary Ammonium Compounds/chemistry
11.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608823

ABSTRACT

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Subject(s)
Ferroptosis , Iron , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice , Iron/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Male , Cell Survival/drug effects , Histones/metabolism , Histones/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Mice, Inbred C57BL , Cyclohexylamines
12.
Analyst ; 149(8): 2291-2298, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38511612

ABSTRACT

Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.

13.
Chemosphere ; 354: 141671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479682

ABSTRACT

To address the challenges posed by signal capacity limitations and the reliance of sensing methods on single analytical information, this study developed an electrochemiluminescence (ECL) and colorimetric dual-mode sensing platform for the precise detection of 4-chloroethcathinone (4-CEC) in water environments. Firstly, the accurate alignment of the reflection wavelength of appropriately sized silica inverse opal photonic crystals (SIOPCs) with the ECL emission wavelength of luminescent metal-organic frameworks (PCN-224) has been achieved via diameter modulation. This innovative design, which cleverly utilized the band-edge effect, improved the luminous intensity of the ECL sensor, leading to a significant boost in analytical performance. Secondly, the establishment of a colorimetric detection method for confirming the presence of 4-CEC in samples through visual observation of color changes was achieved by employing an aptamer-based dye displacement reaction, utilizing differential binding affinities between the aptamer and both the sulforhodamine B (SRB) and 4-CEC. Under the optimal experimental conditions, the dual-mode sensor demonstrated ECL detection of limits (LOD) of 2.6 × 10-13 g/L and colorimetric LOD of 6.5 ng/L for 4-CEC. These findings highlighted the tremendous potential of developing streamlined and efficient dual-signal readout platforms using ECL aptamer sensors for the precise determination of other Synthetic cathinones (SCs) in water environments.


Subject(s)
Biosensing Techniques , Colorimetry , Synthetic Cathinone , Luminescent Measurements/methods , Silicon Dioxide , Biosensing Techniques/methods , Limit of Detection , Water , Electrochemical Techniques/methods
14.
Acta Pharm Sin B ; 14(2): 712-728, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322347

ABSTRACT

Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.

15.
Trends Endocrinol Metab ; 35(3): 219-234, 2024 03.
Article in English | MEDLINE | ID: mdl-37981501

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Apoptosis , Myocytes, Cardiac/metabolism , Pyroptosis , Coronary Artery Disease/metabolism
16.
Epigenetics Chromatin ; 16(1): 47, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057834

ABSTRACT

Histone methyltransferase SETDB1 (SET domain bifurcated histone lysine methyltransferase 1, also known as ESET or KMT1E) is known to be involved in the deposition of the di- and tri-methyl marks on H3K9 (H3K9me2 and H3K9me3), which are associated with transcription repression. SETDB1 exerts an essential role in the silencing of endogenous retroviruses (ERVs) in embryonic stem cells (mESCs) by tri-methylating H3K9 (H3K9me3) and interacting with DNA methyltransferases (DNMTs). Additionally, SETDB1 is engaged in regulating multiple biological processes and diseases, such as ageing, tumors, and inflammatory bowel disease (IBD), by methylating both histones and non-histone proteins. In this review, we provide an overview of the complex biology of SETDB1, review the upstream regulatory mechanisms of SETDB1 and its partners, discuss the functions and molecular mechanisms of SETDB1 in cell fate determination and stem cell, as well as in tumors and other diseases. Finally, we discuss the current challenges and prospects of targeting SETDB1 for the treatment of different diseases, and we also suggest some future research directions in the field of SETDB1 research.


Subject(s)
Neoplasms , PR-SET Domains , Humans , Histones/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , DNA Methylation , Neoplasms/genetics
17.
Zhongguo Gu Shang ; 36(12): 1130-5, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38130220

ABSTRACT

OBJECTIVE: To explore influence of external factors of wind, cold and dampness on clinical symptoms in knee osteoarthritis (KOA) patients with different constitutions of traditional Chinese medicine. METHODS: A cross-sectional stratified study was performed to select 108 patients with GradeⅡKOA in Kellgren & Lawrence (K-L) classification, including 22 males and 86 females, aged from 47 to 75 years old with an average of (60.7±6.0) years old;body mass index(BMI) ranged from 17.87 to 31.22 kg·m-2 with an average of (23.80±2.86) kg·m-2. According to Classification and Judgment of TCM Physique (ZYYXH/T157-2009), the types of TCM physique were determined and divided into 4 layers according to the deficiency and actual physique. Among them, there were 24 patients without biased physique, 12 males and 12 females, aged from 51 to 73 years old with an average of(62.8±6.0) years old, BMI ranged from 17.87 to 31.14 kg·m-2 with an average of (24.32±3.25) kg·m-2;there were 46 patients with virtual bias constitution, including 7 males and 39 females, aged from 47 to 70 years old with an average of (60.0±5.8) years old, BMI ranged from 19.38 to 31.22 kg·m-2 with an average of(23.42±2.97) kg·m-2;There were 26 patients with solid bias constitution, including 2 males and 24 females, aged from 48 to 75 years old with an average of (60.4±5.8) years old, BMI ranged from 21.16 to 30.76 kg·m-2 with an average of (24.15±2.33) kg·m-2;there were 9 patients with special constitution, 1 male and 8 female, aged from 53 to 75 years old with an average of (59.8±7.5) years old, BMI ranged from 19.26 to 26.67 kg·m-2 with an average of (23.79±2.49) kg·m-2. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to evaluate severity of clinical symptoms. The wind-cold-dampness external factor score was calculated through the questionnaire of wind-cold-dampness syndrome scale to evaluate degree of influence of wind-cold-dampness external factor. Pearson correlation analysis and partial correlation analysis were used to calculate the correlation coefficient between severity of external factors affecting wind, cold and dampness and severity of clinical symptoms in patients with different TCM constitution stratification. RESULTS: There was no statistical significance between total score of wind-cold-dampness and WOMAC score in patients with no biased constitution and special condition. Total wind-cold-dampness score of patients with virtual biased constitution was positively correlated with WOMAC stiffness score (r=0.327, P=0.032), and total wind-cold-dampness score of patients with solid biased constitution was positively correlated with WOMAC pain score (r=0.561, P=0.005) and WOMAC overall score (r=0.446, P=0.033). After further adjusting for the interaction of external factors of wind-cold-dampness, there was no statistical significance between wind-cold-dampness scores and WOMAC scores in patients with solid biased constitution. The score of dampness and pathogenic factors was positively correlated with WOMAC stiffness score (r=0.414, P=0.007). CONCLUSION: The external factors of wind-cold dampness have different effects on the clinical symptoms of KOA patients with different TCM constitutions. Compared with other constitutions, the rigid symptoms of patients with asthenic biased constitutions are more susceptible to dampness pathogenic factors.


Subject(s)
Medicine, Chinese Traditional , Osteoarthritis, Knee , Aged , Female , Humans , Male , Middle Aged , Cross-Sectional Studies , Syndrome , Wind , Cold Temperature
18.
Analyst ; 148(23): 6087-6096, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37916516

ABSTRACT

Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.


Subject(s)
Chitosan , Metal-Organic Frameworks , Polymers , Enrofloxacin , Pyrroles , Zinc , Anti-Bacterial Agents
19.
ACS Appl Mater Interfaces ; 15(48): 55369-55378, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37987692

ABSTRACT

Signal amplification is a powerful approach to increasing the detection sensitivity of electrochemiluminescence (ECL). Here, we developed synergistic multieffect catalytic strategies based on CuCo2O4 nanorod combination of Ag NPs as coreaction accelerators to fabricate an efficient covalent organic framework (PTCA-COF)-based ternary ECL biosensor. Concretely, the high redox reversibility of Co3+/Co2+ and Cu2+/Cu+ would constantly promote the decomposition of S2O82- for ECL emission. Meanwhile, the introduction of Ag NPs with excellent electrocatalytic activity further realized multiple amplification of the ECL signal. Furthermore, the good hydrogen evolution reaction (HER) ability of Ag@CuCo2O4 nanorods could accelerate the proton transmission rate of the system to amplify ECL behavior. In the presence of the target synthetic cathinone 4-chloroethcathinone (4-CEC) as the quenching ECL signal-response probe, the Ferrocene (Fc)-labeled aptamer folded into the conformationally limited stem-loop structure, bringing Fc near the ECL luminophore and resulting in quenched ECL emission. The quenching effect was connected with target-induced aptamer conformational changes and consequently reflected the target concentration. Under optimum conditions, the proposed biosensor realized a highly sensitive assay for 4-CEC with a large dynamic range from 1.0 × 10-12 to 1.0 × 10-6 g/L and a detection limit as low as 2.5 × 10-13 g/L. This study integrated multiple amplification strategies for efficient ECL enhancement, which provided a novel approach to constructing highly bioactive and sensitive sensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Synthetic Cathinone , Electrochemical Techniques/methods , Luminescent Measurements/methods , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Limit of Detection
20.
Anal Chim Acta ; 1279: 341852, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827658

ABSTRACT

As is common knowledge, a strong electrochemiluminescence (ECL) signal is required to ensure the high sensitivity of trace target detection. Here, a dual signal amplification strategy by integrating of perovskite and photonic crystal was fabricated for quantitative synthetic cannabinoids (AB-PINACA) detection based on Zr-connected PTCA and TCPP (PTCA-TCPP) with excellent ECL performance as luminophores. On the one hand, the co-reaction accelerator perovskite (LaCoO3) improved the effective electroactive area of the electrode and promoted the decomposition of K2S2O8, resulting in a stronger ECL signal value. On the other hand, polystyrene inverse opal (PIOPCs) formed after the swelling of PS microspheres not only taken advantage of the light scattering effect and excellent catalytic property of photonic crystals to amplify the ECL signal, but also could be used as a binder to fix LaCoO3 and PTCA-TCPP on the electrode surface to generate unprecedented ECL response and stable ECL signals. Subsequently, the detection substance AB-PINACA was loaded on the electrode surface via the amide bond with the luminophores PTCA-TCPP, thus quenching the ECL signal, so as to realize the sensitive detection of synthetic cannabinoids. Under the optimal conditions, the proposed sensor achieved highly sensitive AB-PINACA detection with a dynamic range from 1.0 × 10-12 to 1.0 × 10-3 g/L and the detection limit was 1.1 × 10-13 g/L, which had great application potential in the detection of synthetic cannabinoids.

SELECTION OF CITATIONS
SEARCH DETAIL
...