Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 219: 111450, 2021 06.
Article in English | MEDLINE | ID: mdl-33826973

ABSTRACT

Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Coordination Complexes/pharmacology , Iridium/chemistry , Mitochondria/metabolism , A549 Cells , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Coordination Complexes/chemistry , Humans , Magnetic Resonance Spectroscopy/methods , Membrane Potential, Mitochondrial/drug effects , Pseudomonas aeruginosa/drug effects , Quinolines/chemistry , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Staphylococcus aureus/drug effects
2.
J Biol Inorg Chem ; 25(8): 1107-1116, 2020 12.
Article in English | MEDLINE | ID: mdl-33079244

ABSTRACT

As the "powerhouse" of a cell, mitochondria maintain energy homeostasis, synthesize ATP via oxidative phosphorylation, generate ROS signaling molecules, and modulate cell apoptosis. Herein, three Re(I) complexes bearing guanidinium derivatives have been synthesized and characterized. All of these complexes exhibit moderate anticancer activity in HepG2, HeLa, MCF-7, and A549 cancer cells. Mechanism studies indicate that complex 3, [Re(CO)3(L)(Im)](PF6)2, can selectively localize in the mitochondria and induce cancer cell death through mitochondria-associated pathways. In addition, complex 3 can effectively depress the ability of cell migration, cell invasion, and colony formation.


Subject(s)
Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Guanidine/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Rhenium/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Ligands , Neoplasm Invasiveness , Structure-Activity Relationship
3.
Oncol Lett ; 14(3): 2765-2770, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28928817

ABSTRACT

Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase, which promotes the flux of carbohydrates into mitochondria and enhances the aerobic oxidation of glucose. DCA has previously been demonstrated to exhibit antitumor properties. The present study revealed that treatment with DCA induced increased levels of autophagy-associated proteins in esophageal squamous carcinoma cells while minimally affecting apoptosis. The present study examined the localization of light chain (LC)-3 by adenovirus infection with a green fluorescent protein (FP)-red FP-LC3 reporter construction and confirmed that DCA treatment induced significant autophagy. Furthermore, the inhibition of DCA-induced autophagy facilitated cell apoptosis and improved the drug sensitivity of esophageal squamous carcinoma cells to DCA and 5-FU (5-fluorouracil). The proliferation of TE-1 cells was markedly inhibited at low concentrations of DCA and 5-FU treatment when subjected to Atg5 mRNA interference, indicating that autophagy performed a protective role in cell survival upon DCA treatment. To determine the underlying mechanism of DCA-induced autophagy, the present study measured alterations in autophagy-associated signaling pathways. Notably, the protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) signaling pathway, an important negative regulator of autophagy, was demonstrated to be suppressed by DCA treatment. These results may direct the development of novel strategies for the treatment of esophageal squamous carcinoma based on the combined use of DCA and autophagy inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...