Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Magn Reson Imaging ; 108: 98-103, 2024 May.
Article in English | MEDLINE | ID: mdl-38331054

ABSTRACT

OBJECTIVES: To investigate the feasibility of T1rho-weighted imaging in differentiating malignant from benign breast lesions and to explore the additional value of T1rho to conventional MRI. MATERIALS AND METHODS: We prospectively enrolled consecutive women with breast lesions who underwent preoperative T1rho-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) between November 2021 and July 2023. The T1rho, apparent diffusion coefficient (ADC), and semi-quantitative parameters from DCE-MRI were obtained and compared between benign and malignant groups. The diagnostic performance was analyzed and compared using receiver operating characteristic (ROC) curves and the Delong Test. RESULTS: This study included 113 patients (74 malignant and 39 benign lesions). The mean T1rho value in the benign group (92.61 ± 22.10 ms) was significantly higher than that in the malignant group (72.18 ± 16.37 ms) (P < 0.001). The ADC value and time to peak (TTP) value in the malignant group (1.13 ± 0.45 and 269.06 ± 106.01, respectively) were lower than those in the benign group (1.57 ± 0.45 and 388.30 ± 81.13, respectively) (all P < 0.001). T1rho combined with ADC and TTP showed good diagnostic performance with an area under the curve (AUC) of 0.896, a sensitivity of 81.0%, and a specificity of 87.1%. The specificity and sensitivity of the combination of T1rho, ADC, and TTP were significantly higher than those of the combination of ADC and TTP (87.1% vs. 84.6%, P < 0.005; 81.0% vs. 77.0%, P < 0.001). CONCLUSION: T1rho-weighted imaging was a feasible MRI sequence for differentiating malignant from benign breast lesions. The combination of T1rho, ADC and TTP could achieve a favorable diagnostic performance with improved specificity and sensitivity, T1rho could serve as a supplementary approach to conventional MRI.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Humans , Female , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , ROC Curve , Diagnosis, Differential , Retrospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast/diagnostic imaging , Breast/pathology , Contrast Media/pharmacology
2.
Diagn Interv Imaging ; 105(5): 191-205, 2024 May.
Article in English | MEDLINE | ID: mdl-38272773

ABSTRACT

PURPOSE: The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. MATERIAL AND METHODS: Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. RESULTS: A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25-75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478-0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681-0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630-0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717-0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217-0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. CONCLUSION: Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.


Subject(s)
Breast Neoplasms , Machine Learning , Multiparametric Magnetic Resonance Imaging , Humans , Female , Breast Neoplasms/diagnostic imaging , Middle Aged , Multiparametric Magnetic Resonance Imaging/methods , Adult , Aged , Predictive Value of Tests
3.
ACS Omega ; 9(1): 1443-1453, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222632

ABSTRACT

Carbonate rocks typically constitute porous media, making the study of hydrocarbon accumulation in carbonate reservoirs an essential area of research. In the Tazhong area of the Tarim Basin, specifically within the Lower Ordovician stratum exceeding 7000 m, effective reservoirs and industrial liquid hydrocarbon accumulations persist. However, the existence of a depth limit of oil accumulation (DLOA) for oil accumulation in carbonate reservoirs remains unclear, posing a challenge for explorers. This study quantitatively characterizes the critical condition of DLOA in deep carbonate reservoirs from the perspective of hydrocarbon accumulation dynamics. Through comprehensive experimental analysis, statistical assessments, and numerical simulations, it also forecasts the potential for deep oil exploration. Based on the results of mercury injection experiments on 350 carbonate rock cores collected from 19 drilling wells in the deep Lower Ordovician, it was found that the reservoir is compact and exhibits significant heterogeneity. The driving force for oil accumulation is the capillary pressure difference between the surrounding rock and the reservoir. A greater capillary pressure difference indicates improved oil-bearing properties within the reservoir. When the capillary pressure difference between the reservoir and surrounding rock reaches zero, oil accumulation cannot occur, marking the critical condition of DLOA. The critical pore throat radius for DLOA in the deep Lower Ordovician carbonate rocks in the Tazhong area of the Tarim Basin is determined to be 0.01 µm, and the DLOA is estimated at 9000 m. This study confirms that the maximum depth for the embedded Lower Ordovician carbonate reservoir in the Tazhong area does not surpass this limit. Consequently, oil exploration in deep carbonate rocks within this stratum is both feasible and promising. The findings from this study hold significant importance in scientifically predicting favorable areas for oil exploitation in deep layers and offer valuable insights into understanding the oil flow in carbonate rocks.

4.
Magn Reson Imaging ; 105: 37-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890802

ABSTRACT

PURPOSE: To evaluate the predictive performance of multiparameter and histogram features derived from amide proton transfer-weighted imaging (APTWI), intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) for histopathological types of breast tumors. METHODS: Region of interest (ROI) was delineated by outlining the largest slice of the tumor on the false-color images of the DKI, IVIM and APTWI parameters, and extracted the histogram features. Receiver operating characteristic (ROC) curve was used to evaluate the performance of parameters in predicting benign and malignant breast lesions, molecular prognostic biomarkers, lymph node status, and subtypes of breast lesions. The Spearman correlation coefficient was used to determine the correlations between each parameter and clinical-pathological factors. RESULTS: All 52 breast lesions were enrolled in this prospective study, including 8 benign lesions and 44 breast cancers. To diagnose malignant and benign breast lesions, the value of APT (min) performed best, with the AUC reaching 0.983. According to the different imaging methods, the APTWI performed best. To predict the positive status of ER, PR, Ki67, the value of Dapp (uniformity), Dapp (uniformity), f (entropy) performed best, with the AUC values reaching 0.743, 0.770, 0.848, respectively. For the identification of Luminal B, HER2-enriched, and TNBC breast cancers, Kapp (max), f (kurtosis), and Dapp (uniformity) performed best, with AUC values reaching 0.679, 0.826, 0.771, respectively. CONCLUSION: This study found the APTWI, IVIM and DKI parameters could diagnose breast cancer. The histogram features of DKI and IVIM, based on tumor heterogeneity, may help to predict breast cancer subtypes.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Protons , Diffusion Magnetic Resonance Imaging/methods , Prospective Studies , Diffusion Tensor Imaging/methods , Breast Neoplasms/diagnostic imaging , Motion
5.
J Magn Reson Imaging ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38109316

ABSTRACT

BACKGROUND: Siamese network (SN) using longitudinal DCE-MRI for pathologic complete response (pCR) identification lack a unified approach to phases selection. PURPOSE: To identify pCR in early-stage NAC, using SN with longitudinal DCE-MRI and introducing IPS for phases selection. STUDY TYPE: Multicenter, longitudinal. POPULATION: Center A: 162 female patients (50.63 ± 8.41 years) divided 7:3 into training and internal validation cohorts. Center B: 61 female patients (50.08 ± 7.82 years) were used as an external validation cohort. FIELD STRENGTH/SEQUENCE: Center A: single vendor 3.0 T with a compressed-sensing volume interpolated breath-hold examination sequence. Center B: single vendor 1.5 T with volume interpolated breath-hold examination sequence. ASSESSMENT: Patients underwent DCE-MRI before and after two NAC cycles, with tumor regions of interest (ROI) manually delineated. Histopathology was the reference for pCR identification. Models developed included a clinical one, four SN models based on IPS-selected phases, and integrated models combining clinical and SN features. STATISTICAL TESTS: Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The DeLong test was used to compare AUCs. Net reclassification improvement and integrated discrimination improvement (IDI) tests were employed for performance comparison. P < 0.05 was considered significant. RESULTS: In internal and external validation cohorts, the clinical model showed AUCs of 0.760 and 0.718. SN and integrated models, with increasing phases via IPS, achieved AUCs ranging from 0.813 to 0.951 and 0.818 to 0.922. Notably, SN-3 and integrated-3 and integrated-4 outperformed the clinical model. However, input phases beyond 20% did not significantly enhance performance (IDI test: SN-4 vs. SN-3, P = 0.314 and 0.630; integrated-4 vs. integrated-3, P = 0.785 and 0.709). DATA CONCLUSION: The longitudinal multiphase DCE-MRI based on the SN demonstrates promise for identifying pCR in breast cancer. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

6.
Diagn Interv Imaging ; 104(12): 605-614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37543490

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the temporal trends of ultrafast dynamic contrast-enhanced (DCE)-MRI during neoadjuvant chemotherapy (NAC) and to investigate whether the changes in DCE-MRI parameters could early predict pathologic complete response (pCR) of breast cancer. MATERIALS AND METHODS: This longitudinal study prospectively recruited consecutive participants with breast cancer who underwent ultrafast DCE-MRI examinations before treatment and after two, four, and six NAC cycles between February 2021 and February 2022. Five ultrafast DCE-MRI parameters (maximum slope [MS], time-to-peak [TTP], time-to-enhancement [TTE], peak enhancement intensity [PEI], and initial area under the curve in 60 s [iAUC]) and tumor size were measured at each timepoint. The changes in parameters between each pair of adjacent timepoints were additionally measured and compared between the pCR and non-pCR groups. Longitudinal data were analyzed using generalized estimating equations. The performance for predicting pCR was assessed using area under the receiver operating characteristic curve (AUC). RESULTS: Sixty-seven women (mean age, 50 ± 8 [standard deviation] years; age range: 25-69 years) were included, 19 of whom achieved pCR. MS, PEI, iAUC, and tumor size decreased, while TTP increased during NAC (all P < 0.001). The AUC (0.92; 95% confidence interval [CI]: 0.83-0.97) of the model incorporating ultrafast DCE-MRI parameter change values (from timepoints 1 to 2) and clinicopathologic characteristics was greater than that of the clinical model (AUC, 0.79; 95% CI: 0.68-0.88) and ultrafast DCE-MRI parameter model at timepoint 2 when combined with clinicopathologic characteristics (AUC, 0.82; 95% CI: 0.71-0.90) (P = 0.01 and 0.02). CONCLUSION: Early changes in ultrafast DCE-MRI parameters after NAC combined with clinicopathologic characteristics could serve as predictive markers of pCR of breast cancer.


Subject(s)
Breast Neoplasms , Female , Humans , Adult , Middle Aged , Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy , Longitudinal Studies , Treatment Outcome , Contrast Media , Magnetic Resonance Imaging , Retrospective Studies
7.
Int J Nanomedicine ; 17: 2943-2960, 2022.
Article in English | MEDLINE | ID: mdl-35814614

ABSTRACT

Purpose: Breast cancer is detrimental to the health of women due to the difficulty of early diagnosis and unsatisfactory therapeutic efficacy of available breast cancer therapies. High intensity focused ultrasound (HIFU) ablation is a new method for the treatment of breast tumors, but there is a problem of low ablation efficiency. Therefore, the improvement of HIFU efficiency to combat breast cancer is immediately needed. This study aimed to describe a novel anaerobic bacteria-mediated nanoplatform, comprising synergistic HIFU therapy for breast cancer under guidance of ultrasound (US) and magnetic resonance (MR) bimodal imaging. Methods: The PFH@CL/Fe3O4 nanoparticles (NPs) (Perfluorohexane (PFH) and superparamagnetic iron oxides (SPIO, Fe3O4) with cationic lipid (CL) NPs) were synthesized using the thin membrane hydration method. The novel nanoplatform Bifidobacterium bifidum-mediated PFH@CL/Fe3O4 NPs were constructed by electrostatic adsorption. Thereafter, US and MR bimodal imaging ability of B. bifidum-mediated PFH@CL/Fe3O4 NPs was evaluated in vitro and in vivo. Finally, the efficacy of HIFU ablation based on B. bifidum-PFH@CL/Fe3O4 NPs was studied. Results: B. bifidum combined with PFH@CL/Fe3O4 NPs by electrostatic adsorption and enhanced the tumor targeting ability of PFH@CL/Fe3O4 NPs. US and MR bimodal imaging clearly displayed the distribution of the bio-targeting nanoplatform in vivo. It was conducive for accurate and effective guidance of HIFU synergistic treatment of tumors. Furthermore, PFH@CL/Fe3O4 NPs could form microbubbles by acoustic droplet evaporation and promote efficiency of HIFU ablation under guidance of bimodal imaging. Conclusion: A bio-targeting nanoplatform with high stability and good physicochemical properties was constructed. The HIFU synergistic agent achieved early precision imaging of tumors and promoted therapeutic effect, monitored by US and MR bimodal imaging during the treatment process.


Subject(s)
Breast Neoplasms , High-Intensity Focused Ultrasound Ablation , Nanoparticles , Breast Neoplasms/pathology , Cell Line, Tumor , Female , High-Intensity Focused Ultrasound Ablation/methods , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Nanoparticles/chemistry , Ultrasonography
8.
Front Oncol ; 12: 1076267, 2022.
Article in English | MEDLINE | ID: mdl-36644636

ABSTRACT

Introduction: To develop and validate a radiogenomics model for predicting axillary lymph node metastasis (ALNM) in breast cancer compared to a genomics and radiomics model. Methods: This retrospective study integrated transcriptomic data from The Cancer Genome Atlas with matched MRI data from The Cancer Imaging Archive for the same set of 111 patients with breast cancer, which were used as the training and testing groups. Fifteen patients from one hospital were enrolled as the external validation group. Radiomics features were extracted from dynamic contrast-enhanced (DCE)-MRI of breast cancer, and genomics features were derived from differentially expressed gene analysis of transcriptome data. Boruta was used for genomics and radiomics data dimension reduction and feature selection. Logistic regression was applied to develop genomics, radiomics, and radiogenomics models to predict ALNM. The performance of the three models was assessed by receiver operating characteristic curves and compared by the Delong test. Results: The genomics model was established by nine genomics features, and the radiomics model was established by three radiomics features. The two models showed good discrimination performance in predicting ALNM in breast cancer, with areas under the curves (AUCs) of 0.80, 0.67, and 0.52 for the genomics model and 0.72, 0.68, and 0.71 for the radiomics model in the training, testing and external validation groups, respectively. The radiogenomics model integrated with five genomics features and three radiomics features had a better performance, with AUCs of 0.84, 0.75, and 0.82 in the three groups, respectively, which was higher than the AUC of the radiomics model in the training group and the genomics model in the external validation group (both P < 0.05). Conclusion: The radiogenomics model combining radiomics features and genomics features improved the performance to predict ALNM in breast cancer.

9.
Int J Nanomedicine ; 16: 4643-4659, 2021.
Article in English | MEDLINE | ID: mdl-34267516

ABSTRACT

PURPOSE: Hypoxia is considered to be obstructive to tumor treatment, but the reduced oxygen surroundings provide a suitable habitat for Bifidobacterium bifidum (BF) to colonize. The anaerobe BF selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. Therefore, BF may be a potential targeting agent which could be used effectively in tumor treatment. We aimed to determine whether a novel BF-mediated strategy, that was designed to deliver AP-PFH/PLGA NPs (aptamers CCFM641-5-functionalized Perfluorohexane (PFH) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles) by aptamer-directed approach into solid tumor based on the tumor-targeting ability of BF, could improve efficiency of high intensity focused ultrasound (HIFU) treatment of breast cancer. METHODS: We synthesized AP-PFH/PLGA NPs using double emulsion method and carbodiimide method. Then, we evaluated targeting ability of AP-PFH/PLGA NPs to BF in vivo. Finally, we studied the efficacy of HIFU ablation based on BF plus AP-PFH/PLGA NPs (BF-mediated HIFU ablation) in tumor. RESULTS: The elaborately designed AP-PFH/PLGA NPs can target BF colonized in tumor to achieve high tumor accumulation, which can significantly enhance HIFU therapeutic efficiency. We also found that, compared with traditional chemotherapy, this therapy not only inhibits tumor growth, but also significantly prolongs the survival time of mice. More importantly, this treatment strategy has no obvious side effects. CONCLUSION: We successfully established a novel therapy method, BF-mediated HIFU ablation, which provides an excellent platform for highly efficient and non-invasive therapy of tumor.


Subject(s)
Bifidobacterium bifidum/metabolism , Drug Carriers/metabolism , Nanoparticles/administration & dosage , Animals , Cell Line, Tumor , Fluorocarbons/chemistry , Humans , Mice , Nanoparticles/therapeutic use , Polyesters/chemistry
10.
Biochem Biophys Res Commun ; 571: 104-109, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34314995

ABSTRACT

The acoustic propagation characteristic of ultrasound determines that the energy of ultrasound beam will decrease with the increase of its propagation depth in the body. Similarly, the energy of High Intensity Focused Ultrasound (HIFU) will be attenuated with the increase of HIFU propagation depth in the body. Ensuring sufficient ultrasound energy deposition in the HIFU ablation region for tumor ablation is usually achieved by increasing the ultrasound irradiation power or prolonging the ultrasound ablation time. However, these two methods may damage the normal tissue adjacent to the HIFU ablation region. Herein, we constructed the nanoparticles conjugated with tumor-homing bacteria as the biological tumor-homing synergist to facilitate HIFU-mediated tumor ablation avoiding the potential safety risk. In our strategy, Bifidobacterium bifidum (B.bifidum) was selectively colonized in the hypoxic region of solid tumors after been injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein due to its anaerobic growth characteristic. The amount of B. bifidum with negative surface potential in the hypoxic region of solid tumors was increased by its anaerobic proliferation. Polyethylenimine (PEI) -modified Poly (lactic-co-glycolic) acid nanoparticles loaded sodium bicarbonate (PEI-PLGA-NaHCO3-NPs) with positive surface potential injected into 4T1 breast cancer bearing-BALB/c mice via the tail vein displayed the tumor-homing ability by the electrostatic adsorption with B. bifidum colonized solid tumors. PEI-PLGA-NaHCO3-NPs could release NaHCO3 to produce carbon dioxide (CO2) as cavitation nuclei inside the acidic microenvironment of solid tumors. When HIFU irradiated solid tumors contained with more cavitation nuclei, the ultrasound energy deposition at the tumor region was increased to destroy the tumors more effectively. Meanwhile, the improved efficiency of HIFU-mediated tumor ablation reduced the dependence of the tumor ablation on the ultrasound energy dose, which improved the safety of HIFU-mediated tumor ablation to the non-targeted ablation tissue. This tumor-homing synergist shows the potential application value on the HIFU-mediated tumor ablation in the clinical.


Subject(s)
Antineoplastic Agents/pharmacology , Bifidobacterium bifidum/isolation & purification , Breast Neoplasms/drug therapy , Breast Neoplasms/microbiology , Nanoparticles/chemistry , Polyethyleneimine/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Mice , Mice, Inbred BALB C , Polyethyleneimine/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Ultrasonic Waves
11.
Biomater Sci ; 9(6): 2230-2243, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33507174

ABSTRACT

Tumor therapy is facing the big challenge of insufficient treatment. Here, we report high-intensity focused ultrasound (HIFU)-responsive magnetic nanoparticles based on superparamagnetic iron oxide (SPIO, Fe3O4 NPs) as the shell and l-arginine (LA) as the core entrapped by poly-lactide-co-glycolide (PLGA) nanoparticles (Fe3O4@PLGA/LA NPs) for synergistic breast cancer therapy. These NPs can significantly enhance therapeutic performance due to their enhanced accumulation and prolonged retention at the tumor site under magnetic guidance. The Fe3O4@PLGA/LA NPs exhibited synergistic therapeutic effects by the rational combination of HIFU-based tumor ablation and nitric oxide (NO) assisted antitumor gas therapy. Both Fe3O4 NPs and LA could be released rapidly under HIFU irradiation, where Fe3O4 NPs can promote HIFU-based tumor ablation by changing the acoustic properties of the tumor tissues and LA can spontaneously react with hydrogen peroxide (H2O2) in the tumor microenvironment to generate NO for gas therapy. Moreover, Fe3O4 NPs can react with H2O2 to produce highly reactive oxygen-containing species (ROS) to accelerate the oxidation of LA and the release of NO. This novel strategy showed synergistic tumor growth suppression as compared with individual HIFU therapy or gas therapy. This can be attributed to the rational design of multifunctional NPs with magnetic targeting and multi-modality imaging properties.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Magnetite Nanoparticles , Nanoparticles , Neoplasms , Arginine , Cell Line, Tumor , Humans , Hydrogen Peroxide , Tumor Microenvironment
12.
Int J Nanomedicine ; 16: 105-117, 2021.
Article in English | MEDLINE | ID: mdl-33447030

ABSTRACT

PURPOSE: Cancer treatment still faces big challenges in the clinic, which is raising concerns over the world. In this study, we report the novel strategy of combing bacteriotherapy with high-intensity focused ultrasound (HIFU) therapy for more efficient breast cancer treatment. METHODS: The acoustic reporter gene (ARG) was genetically engineered to be expressed successfully in Escherichia coli (E. coli) to produce the protein nanoparticles-gas vesicles (GVs). Ultrasound was utilized to visualize the GVs in E. coli. In addition, it was injected intravenously for targeted breast cancer therapy by combing the bacteriotherapy with HIFU therapy. RESULTS: ARG expressed in E. coli can be visualized in vitro and in vivo by ultrasound. After intravenous injection, E. coli containing GVs could specifically target the tumor site, colonize consecutively in the tumor microenvironment, and it could obviously inhibit tumor growth. Meanwhile, E. coli which contained GVs could synergize HIFU therapy efficiently both in vitro and in vivo as the cavitation nuclei. Furthermore, the tumor inhibition rate in the combination therapy group could be high up to 87% compared with that in the control group. CONCLUSION: Our novel strategy of combing bacteriotherapy with HIFU therapy can treat breast cancers more effectively than the monotherapies, so it can be seen as a promising strategy.


Subject(s)
Breast Neoplasms/therapy , Escherichia coli Proteins/genetics , Genetic Engineering , Nanoparticles/chemistry , Acoustics , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Combined Modality Therapy , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Female , Genes, Reporter , High-Intensity Focused Ultrasound Ablation , Humans , Liposomes , Mice, Inbred BALB C , Mice, Nude , Tumor Microenvironment
13.
Int J Hyperthermia ; 37(1): 870-878, 2020.
Article in English | MEDLINE | ID: mdl-32689830

ABSTRACT

PURPOSE: This study was conducted to prepare a novel tumor-biotargeting high-intensity focused ultrasound (HIFU) synergist for indirectly delivering lipid nanoparticles based on the targeting ability of Bifidobacterium longum to the hypoxic region of solid tumors. The effects of two different delivery methods on the imaging and treatment of solid tumors enhanced by lipid nanoparticles were compared. METHODS: Biotinylated lipid nanoparticles coated with PFH were prepared, cross-linked with B. longum in vitro using a streptavidin-conjugated B. longum antibody (SBA), and observed and detected by laser confocal microscopy and flow cytometry. Solid tumors were treated with HIFU and PFH/BL-NPs. The effects of different delivery methods on the tumor targeting and efficiency of retention of PFH/BL-NPs were observed using Small animal live imaging and frozen sections from small animals. RESULTS: The PFH/BL-NPs prepared in this study showed good biocompatibility and safety. PFH/BL-NPs and B. longum were cross-linked in a cluster-like manner (confocal laser scanning microscope) in vitro, with a cross-linking rate of 84 ± 6.23% (flow cytometry). The delivery of B. longum followed by that of PFH/BL-NPs not only enhanced the ability of PFH/BL-NPs to target solid tumors (small animal live imaging), but also increased the retention time of PFH/BL-NPs in the tumor (frozen slices), enhancing the effect of the HIFU synergist. CONCLUSION: Delivery of B. longum followed by that of PFH/BL-NPs can enhance the imaging of solid tumors and effectively improve the efficiency of HIFU treatment of solid tumors, providing a basis for further clinical work.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Nanoparticles , Neoplasms , Animals , Bifidobacterium , Neoplasms/diagnostic imaging , Neoplasms/therapy
14.
Sci Rep ; 10(1): 7772, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385414

ABSTRACT

High intensity focused ultrasound (HIFU) has been recently shown as a rapidly developing new technique for non-invasive ablation of local tumors whose therapeutic efficiency can be significantly improved by changing the tissue acoustic environment (AET). Currently, the method of changing AET is mainly to introduce a medium with high acoustic impedance, but there are some disadvantages such as low retention of the introduced medium in the target area and a short residence time during the process. In our strategy, anaerobic bacterium Bifidobacterium longum (B. longum) which can colonize selectively in hypoxic regions of the animal body was successfully localized and shown to proliferate in the hypoxic zone of tumor tissue, overcoming the above disadvantages. This study aimed to explore the effects of Bifidobacteria on AET (including the structure and acoustic properties of tumor tissues) and HIFU ablation at different time. The results show that the injection of Bifidobacteria increased the collagen fibre number, elastic modulus and sound velocity and decreased neovascularization in tumor tissues. The number of collagen fibres and neovascularization decreased significantly over time. Under the same HIFU irradiation intensity, the B. longum injection increased the coagulative necrosis volume and decreased the energy efficiency factor (EEF). This study confirmed that Bifidobacteria can change the AET and increase the deposition of ultrasonic energy and thereby the efficiency of HIFU. In addition, the time that Bifidobacteria stay in the tumor area after injection is an important factor. This research provides a novel approach for synergistic biologically targeted HIFU therapy.


Subject(s)
Acoustics , Bifidobacterium/metabolism , Bifidobacterium/radiation effects , High-Intensity Focused Ultrasound Ablation , Neoplasms/metabolism , Ultrasonic Waves , Biomarkers , Biomechanical Phenomena , Biomedical Engineering , Dose-Response Relationship, Radiation , Elastic Modulus , High-Intensity Focused Ultrasound Ablation/methods , Hypoxia/metabolism , Immunohistochemistry , Neoplasms/therapy
15.
Int J Nanomedicine ; 15: 1871-1888, 2020.
Article in English | MEDLINE | ID: mdl-32256065

ABSTRACT

PURPOSE: The high-intensity focused ultrasound (HIFU) ablation of tumors is inseparable from synergistic agents and image monitoring, but the existing synergistic agents have the defects of poor targeting and a single imaging mode, which limits the therapeutic effects of HIFU. The construction of a multifunctional biological targeting synergistic agent with high biosafety, multimodal imaging and targeting therapeutic performance has great significance for combating cancer. METHODS: Multifunctional biological targeting synergistic agent consisting of Bifidobacterium longum (B. longum), ICG and PFH coloaded cationic lipid nanoparticles (CL-ICG-PFH-NPs) were constructed for targeting multimode imaging, synergistic effects with HIFU and imaging-guided ablation of tumors, which was evaluated both in vitro and in vivo. RESULTS: Both in vitro and in vivo systematical studies validated that the biological targeting synergistic agent can simultaneously achieve tumor-biotargeted multimodal imaging, HIFU synergism and multimodal image monitoring in HIFU therapy. Importantly, the electrostatic adsorption method and the targeting of B. longum to tumor tissues allow the CL-ICG-PFH-NPs to be retained in the tumor tissue, achieve the targeting ability of synergistic agent. Multimodal imaging chose the best treatment time according to the distribution of nanoparticles in the body to guide the efficient and effective treatment of HIFU. CL-ICG-PFH-NPs could serve as a phase change agent and form microbubbles that can facilitate HIFU ablation by mechanical effects, acoustic streaming and shear stress. This lays a foundation for the imaging and treatment of tumors. CONCLUSION: In this work, a biological targeting synergistic agent was successfully constructed with good stability and physicochemical properties. This biological targeting synergistic agent can not only provide information for early diagnosis of tumors but also realize multimodal imaging monitoring during HIFU ablation simultaneously with HIFU treatment, which improves the shortcomings of HIFU treatment and has broad application prospects.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Multimodal Imaging/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Animals , Bifidobacterium longum , Coloring Agents/chemistry , Drug Delivery Systems , Female , Fluorocarbons/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Indocyanine Green/chemistry , Mice, Inbred BALB C , Microbubbles , Nanoparticles/administration & dosage , Xenograft Model Antitumor Assays
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(9): 1009-1016, 2019 Sep 30.
Article in Chinese | MEDLINE | ID: mdl-31640961

ABSTRACT

OBJECTIVE: To investigate the effects of Bifidobacterium on the acoustic characteristics of tumor tissue and how such acoustic changes affect the efficacy of high-intensity focused ultrasound (HIFU) ablation in nude mice. METHODS: Forty mice bearing human breast cancer cell (MDA-MB-231) xenograft were randomized into experimental group (n=20) and control group (n=20) for intravenous injection of Bifidobacterium suspension (200 µL, 4 × 108 cfu/mL) and PBS (200 µL) for 3 consecutive days, respectively. Before and at 3 and 7 days after the first injection, shear wave elastography was used to evaluate the hardness of the tumor tissue. On day 7 after the first injection, 10 mice from each group were sacrificed and the sound velocity and sound attenuation of the tumor tissues were measured. The changes in the collagen fibers in the tumors were evaluated using Masson staining, and neovascularization in the tumor was assessed with immunohistochemistry for platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31). The remaining 10 tumor-bearing mice in each group were subjected to HIFU ablation, and the ablation efficiency was evaluated by assessing the changes in irradiation gray values, coagulative necrosis volume, energy efficiency factor (EEF) and irradiation area and by pathological examination with HE staining. RESULTS: In the experimental group, the collagen fibers in the tumor tissues were strong and densely aligned, and the tumors contained fewer new blood vessels showing strip-or spot-like morphologies. In the control group, the collagen fibers in the tumors were thin and loosely arranged, and the tumors showed abundant elongated or round new blood vessels. Bifidobacterium colonized in the tumor 7 days after the injection, and the tumor hardness was significantly greater in the experimental group than in the control group (P=0.01); the acoustic velocity (P=0.001) and the acoustic attenuation (P=0.000) of the tumor tissues were also greater in the experimental group. HIFU irradiation resulted in significantly greater changes in the gray scale of tumor (P=0.0006) and larger coagulative necrosis volume (P=0.0045) in the experimental group than in the control group, and the EEF was significantly smaller in the experimental group (P=0.0134). CONCLUSIONS: Bifidobacterium can cause changes in collagen fiber content, acoustic velocity and attenuation in the tumor tissue and reduce the EEF of HIFU irradiation, thereby improving the efficacy of HIFU irradiation.


Subject(s)
Bifidobacterium/pathogenicity , Breast Neoplasms/pathology , High-Intensity Focused Ultrasound Ablation , Acoustics , Animals , Collagen , Elasticity Imaging Techniques , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...