Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(8): 226, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879829

ABSTRACT

A bacterium, designated strain T21T, that is non-motile, rod-shaped, and formed pale white colonies, was isolated from the sludge of a wastewater treatment plant's secondary sedimentation tank in China. Strain T21T could grow at 20-40 °C (optimum growth at 30 °C), pH 3.0-10.0 (optimum growth at pH 5.0) and in the presence of 0-8.0% (w/v) NaCl (optimum growth at 2.0%). Based on phylogenetic analysis of 16S rRNA gene sequences and genome sequences, the isolate belongs to the genus Tessaracoccus in the phylum Actinomycetota. It exhibited a close relationship with Tessaracoccus palaemonis J1M15T, Tessaracoccus defluvii LNB-140T, Tessaracoccus flavescens SST-39T, and Tessaracoccus coleopterorum HDW20T. The 16S rRNA gene sequence similarities are 99.8%, 97.9%, 97.9%, and 97.8%, respectively. The major cellular fatty acids were anteiso-C15:0 and C16:0. The main respiratory quinone was MK-9(H4). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, glycolipid, and phospholipid. Genome annotation of strain T21T predicted the presence of 2829 genes, of which 2754 are coding proteins and 59 are RNA genes. The genomic DNA G+C content was 69.2%. Based on the results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, we propose the name Tessaracoccus lacteus sp. nov. for this novel species within the genus Tessaracoccus. The type strain is T21T (=CCTCC AB 2023031T = KCTC 49936T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sewage , Wastewater , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , Wastewater/microbiology , China , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Actinobacteria/genetics , Actinobacteria/classification , Actinobacteria/isolation & purification , Quinones/analysis
2.
Curr Microbiol ; 81(6): 155, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652318

ABSTRACT

A Gram-stain-negative, rod-shaped, non-motile, catalase-positive, denitrifying bacterium, designated strain Y-1T, was isolated from an aeration tank of a sewage treatment plant in China and characterized using polyphasic taxonomic approaches. Strain Y-1T could grow at 10-37 °C (optimum 25 °C), at pH 5.0-10.0 (optimum 7.0) and in the presence of 0-3.0% (w/v) NaCl (optimum 0.5%). The phylogenetic tree based on the 16S rRNA gene sequences revealed that strain Y-1T was a member of genus Diaphorobacter, and showed the highest sequence similarities with Diaphorobacter oryzae RF3T (97.50%), Diaphorobacter nitroreducens NA10BT (97.38%) and Diaphorobacter aerolatus 8604S-37T (96.56%). In terms of carbon source utilization and enzyme activities, strain Y-1T was significantly different from its similar strains. The major respiratory quinone was Q-8, and the main polar lipid was phosphatidylethanolamine. Comparative genomic analysis of strain Y-1T and other Diaphorobacter species was conducted to explore the mechanisms underlying the differences among these strains. Strain Y-1T encoded 3957 genes, consisting of 3813 protein-coding genes and 144 RNA coding genes, and encoded 652 enzymes with 31 unique enzymes compared with other related species. The DNA G + C content was 69.95 mol%. Strain Y-1T exhibited 41.71% DNA-DNA relatedness and 95% ANIb with the most related type strains.On the basis of the evidence presented from polyphasic analysis, strain Y-1T was suggested as a novel species within the genus Diaphorobacter, for which the name Diaphorobacter limosus sp. nov. is proposed, with the type strain Y-1T (= KCTC 92852T = CCTCC AB 2023032T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sewage , Sewage/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Genome, Bacterial , Fatty Acids/chemistry , Comamonadaceae/genetics , Comamonadaceae/classification , Comamonadaceae/isolation & purification , Sequence Analysis, DNA , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...