Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Article in English | MEDLINE | ID: mdl-38599159

ABSTRACT

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistry
2.
Chemistry ; 29(48): e202301121, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37300353

ABSTRACT

Lithium-sulfur (Li-S) batteries are a promising energy storage technology due to their tempting high theoretical capacity and energy density. Nevertheless, the wastage of active materials that originates from the shuttling effect of polysulfides still hinders advancement of Li-S batteries. The effective design of cathode materials is extremely pivotal to solve this thorny problem. Herein, surface engineering in covalent organic polymers (COPs) has been performed to investigate the influence of pore wall polarity on the performance of COP-based cathodes used for Li-S batteries. With the assistance of experimental investigation and theoretical calculations, performance improvement by increasing pore surface polarity and a synergy effect of the polarized functionalities, along with nano-confinement effect of the COPs, are disclosed, to which the improved performance of Li-S batteries including outstanding Coulombic efficiency (99.0 %) and extremely low capacity decay (0.08 % over 425 cycles at 1.0 C) is attributed. This work not only enlightens the designable synthesis and applications of covalent polymers as polar sulfur hosts with high utilization of active materials, but also provides a feasible guide for the design of effective cathode materials for future advanced Li-S batteries.

3.
Org Biomol Chem ; 21(17): 3691-3696, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37070775

ABSTRACT

We report a Brønsted acid-catalyzed C6 functionalization of 2,3-disubstituted indoles with 2,2-diarylacetonitriles for efficient construction of cyano-substituted all-carbon quaternary centers with excellent yields. The synthetic utility was demonstrated by the conversion of the cyano-group which enables the divergent preparation of aldehydes, primary amines and amides. Control experiments suggested that this process involves C-H oxidation of 2,2-diarylacetonitriles to in situ generate δ,δ-disubstituted p-quinone methide intermediates. This protocol provides an efficient method for C6 functionalization of 2,3-disubstituted indoles to construct all-carbon quaternary centers.

4.
Metabolites ; 12(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36144209

ABSTRACT

Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy that can occur during the egg, larval, pupal, and adult stages in holometabolous insects. Kallima inachus (Lepidoptera: Nymphalidae) is a holometabolous and adult diapausing butterfly. This study was intended to analyze metabolic changes in K. inachus during ontogeny and diapause through a non-targeted UPLC-MS/MS (ultra-performance liquid chromatograph coupled with tandem mass spectrometry) based metabolomics analysis. A variety of glycerophospholipids (11), amino acid and its derivatives (16), and fatty acyls (nine) are crucial to the stage development of K. inachus. 2-Keto-6-acetamidocaproate, N-phenylacetylglycine, Cinnabarinic acid, 2-(Formylamino) benzoic acid, L-histidine, L-glutamate, and L-glutamine play a potentially important role in transition of successive stages (larva to pupa and pupa to adult). We observed adjustments associated with active metabolism, including an accumulation of glycerophospholipids and carbohydrates and a degradation of lipids, as well as amino acid and its derivatives shifts, suggesting significantly changed in energy utilization and management when entering into adult diapause. Alpha-linolenic acid metabolism and ferroptosis were first found to be associated with diapause in adults through pathway analyses. Our study lays the foundation for a systematic study of the developmental mechanism of holometabolous insects and metabolic basis of adult diapause in butterflies.

5.
Org Lett ; 23(7): 2393-2398, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33734717

ABSTRACT

The direct regio- and enantioselective C6 functionalization of 2,3-disubstituted indoles with azadienes has been developed using chiral phosphoric acid as catalyst, providing a convenient approach to synthesize the optically active heterotriarylmethanes with excellent yields, broad substrate scope, and up to 98% ee. Mechanistic studies revealed that N-alkylation of 2,3-disubstituted indoles with azadienes would be reversible, and enantioselective C6 functionalization could be enabled.

6.
Chem Commun (Camb) ; 56(98): 15418-15421, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33231586

ABSTRACT

Transformation between 2D covalent organic frameworks (COFs) via exchange of molecular building blocks with different symmetries has been realized, which gives rise to the conversion between 2D COFs with distinct pore hierarchy. This type of monomer replacement has expanded the scope of the building-unit-exchange-based COF-to-COF transformation strategy.

7.
Front Physiol ; 11: 889, 2020.
Article in English | MEDLINE | ID: mdl-33013431

ABSTRACT

Studies of chemosensory genes are key to a better understanding of intra- and interspecific communications between insects and their environment and provide opportunities for developing environmentally friendly pesticides to target pest species. The bamboo locust Ceracris kiangsu Tsai (Orthoptera: Acrididae) is one of the most important bamboo leaf-eating insects in southern China. However, the genes underlying olfactory sensation are lacking in the bamboo locust. In this study, the transcriptomes of male and female C. kiangsu antennae were sequenced and analyzed. A total of 125 chemosensory genes, including 91 odorant receptors (ORs), 13 ionotropic receptors (IRs), 13 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs), and two sensory neuron membrane proteins, were identified based on sequence alignment and phylogenetic analyses. The expression patterns of all candidate genes on the antennae of males and females, maxillary palps, tarsi, wings, and thoraxes-abdomens were confirmed by real-time quantitative PCR. The analyses demonstrated that most genes are highly expressed in the antennae, and 35 ORs, 7 IRs, 10 OBPs, and 1 CSP exhibit significantly male-biased expression patterns, indicating their potential functions in mating behavior and the recognition of female sex pheromones. In addition to the antennal-predominant genes, some were abundant in the maxillary palps and some in the non-olfactory tissues, suggesting their different functions in the olfactory system of C. kiangsu. Our research offers an extensive resource for investigating the chemoreception mechanism of C. kiangsu. Further studies of olfactory function will provide comprehensive methods and original strategies for integrated pest management.

8.
ACS Appl Mater Interfaces ; 12(31): 34990-34998, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32658445

ABSTRACT

Lithium-sulfur (Li-S) batteries have recently become a research hotspot because of their tempting theoretical capacity and energy density. Nevertheless, the notorious shuttle of polysulfides hinders the advancement of Li-S batteries. Herein, a two-dimensional covalent organic framework (COF) with extended π-conjugated units has been designed, synthesized, and used as sulfur recipients with 88.4 wt % in loading. The COF offers an elaborate platform for sufficient Li-S redox reactions with almost theoretical capacity release (1617 mA h g-1 at 0.1 C), satisfactory rate capability, and intensively traps polysulfides for a decent Coulombic efficiency (ca. 98.0%) and extremely low capacity decay (0.077% per cycle after 528 cycles at 0.5 C). The structural factors of the COF on the high-performance batteries are revealed by density functional theory calculations to be the high degrees of conjugation and proper interlayer space. This work not only demonstrates the great potential of COFs as highly efficient sulfur recipients but also provides a viable guidance for further design of COF materials to tackle shuttling issues toward active materials in electrochemical energy storage.

9.
Int J Biol Macromol ; 134: 237-246, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31059741

ABSTRACT

The bamboo grasshopper, Ceracris kiangsu Tsai, is a pest of bamboos and widely distributed in China from high temperature plains to low temperature plateaus. In this study, high-throughput sequencing was used to analyze the transcriptome of C. kiangsu. Approximately 129,314,084 reads were generated using an Illumina sequencing. De novo assembly yielded 39,013 unigenes with an average length of 987 bp. Based on sequence similarity searches with known proteins, a total of 19,769 (50.67%) unigenes were identified. Of these annotated unigenes, 2114 and 11,412 unigenes were assigned to clusters of orthologous groups and gene ontology, respectively. Furthermore, 2128 simple sequence repeats (SSRs) were identified in the unigenes Differences were observed in gene expression after hypothermic stress, with the most up-regulated genes including heat shock protein genes (Hsps) and genes involved in ATP-binding. The down-regulation of genes involved in the catalytic activity of metabolic mechanisms was also observed. The obtained transcriptome information revealed the ability of C. kiangsu to build cold-tolerance after exposed to a mild low temperature and the transcriptional responses elicited by hypothermic stress.


Subject(s)
Acclimatization/genetics , Gene Expression Profiling , Grasshoppers/genetics , Grasshoppers/physiology , Heat-Shock Response/genetics , Animals , Genes, Insect/genetics , Heat-Shock Proteins/genetics , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Polymorphism, Genetic , Sequence Homology, Nucleic Acid
10.
Chem Commun (Camb) ; 55(31): 4550-4553, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30924825

ABSTRACT

A tetraphenylethene-based 2D covalent organic framework (COF) has been synthesized. It exhibits a very fast response and high sensitivity to the presence of gaseous HCl by way of distinct changes in fluorescence emission and color, which makes the COF a good chemosensor for spectroscopic and naked-eye detection of gaseous HCl.

11.
RSC Adv ; 9(60): 35098-35101, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-35530675

ABSTRACT

An efficient method of synthesizing 2-trifluoromethylindoles from indoles with easy-to-handle, cheap and low-toxic CF3SO2Na under metal-free conditions is described, which selectively introduces trifluoromethyl to indoles on the C2 position. The desired product can be obtained in 0.7 g yield. A radical intermediate may be involved in this transformation.

12.
Front Genet ; 9: 605, 2018.
Article in English | MEDLINE | ID: mdl-30568672

ABSTRACT

The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau.

13.
Genes Genomics ; 40(9): 991-1000, 2018 09.
Article in English | MEDLINE | ID: mdl-30155713

ABSTRACT

The bamboo grasshopper Ceracris kiangsu is a famous bamboo pest in China. The identification of genes involved in olfactory behavior of C. kiangsu is necessary for better understanding the molecular basis and expression profiles of behavior ecology. However, necessary genomic and transcriptomic data are lacking in the species, limiting control efficiency. The primary objective of this study was to find and describe odorant binding proteins in the head of the bamboo grasshopper. We performed the paired-end sequencing on an Illumina Hiseq2000 following the vendor's recommended protocol. Functional annotation was performed by comparison with public databases. OBP genes were first identified using BLASTN and BLASTX results from our C. kiangsu datebase, which was established from the date of transcriptome sequencing. The gene-specific primers were used to conduct RT-PCR to detect the tissue distribution of OBPs using a SYBR Premix ExTaq kit following the manufacturer's instructions with a real-time thermal cycler. We obtained more than 133 million clean reads derived from the C. Kiangsu heads using the next-generation sequencing, which were assembled into 260,822 unique sequences (average 814 bp). We have detected eight putative odorant binding protein genes (OBPs) of C. kiangsu for the first time, and analyzed the expression profiles of the OBPs in different tissues (head, antenna, mouthpart, body and leg). Our results reveal that the eight OBPs display a clear divergence, strongly indicating that they possessed diverse functions, and thus provides comprehensive sequence analysis for elucidating the molecular basis of OBPs in C. kiangsu. In addition, we find that the relative expression levels of OBP1, OBP2 and OBP8 are significantly higher in the antennae as compared to the other OBP genes, suggesting that these three OBP genes play crucial roles in the locust's odorant discrimination. In general, this is the first study to characterize the complete head transcriptome of C. kiangsu using high-throughput sequencing. The study opens a window for functional characterization of the OBPs of C. kiangsu, with potential for new or refined applications of semiochemicals for control of this notorious pest.


Subject(s)
Bambusa/parasitology , Grasshoppers/genetics , Grasshoppers/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Transcriptome , Amino Acid Sequence , Animals , Databases, Genetic , Gene Expression Profiling , Gene Ontology , Head , High-Throughput Nucleotide Sequencing , Insect Proteins/chemistry , Microsatellite Repeats , Phylogeny , Protein Binding , Receptors, Odorant/chemistry , Sequence Homology, Amino Acid
14.
Org Lett ; 20(4): 1158-1161, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29420039

ABSTRACT

A bifunctional squaramide-catalyzed reaction of pyrazolin-5-ones with o-quinone methides in situ generated from 2-(1-tosylalkyl)phenols has been successfully developed, providing a facile access to chiral pyrazolones with high enantioselectivities. In addition, the chiral spiropyrazolones with adjacent tertiary and quaternary stereogenic centers can also be obtained through cascade chlorination/cyclization of the chiral pyrazolones.

15.
J Org Chem ; 82(10): 5441-5448, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28471176

ABSTRACT

The di-tert-butyl peroxide (DTBP) induced coupling of arenesulfonylindoles with ethers such as 1,4-dioxane, tetrahydropyran, tetrahydrofuran, and 1,2-dimethoxyethane was studied. The distinguishing feature of this strategy was characterized by capturing in situ generated vinylogous imine intermediates for the C(sp3)-H bond alkylation of ethers. This general procedure presents the major advantages of its wide substrate scope and good functional group compatibility.

16.
J Am Chem Soc ; 139(19): 6736-6743, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28445639

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of crystalline porous organic materials which are fabricated via reticular chemistry. Their topologic structures can be precisely predicted on the basis of the structures of building blocks. However, constructing COFs with complicated structures has remained a great challenge, due to the limited strategies that can access to the structural complexity of COFs. In this work, we have developed a new approach to produce COFs bearing three different kinds of pores. The design is fulfilled by the combination of vertex-truncation with multiple-linking-site strategy. On the basis of this design, a "V"-shaped building block carrying two aldehyde groups on the end of each branch has been synthesized. Condensation of it with 1,4-diaminobenzene or benzidine leads to the formation of two triple-pore COFs, TP-COF-DAB and TP-COF-BZ, respectively. The topological structures of the triple-pore COFs have been confirmed by PXRD studies, synchrotron small-angle X-ray scattering (SAXS) experiments, theoretical simulations, and pore size distribution analyses. Furthermore, for the first time, an in situ COF-to-COF transformation has also been achieved by heating TP-COF-BZ with 1,4-diaminobenzene under solvothermal condition, which leads to the formation of TP-COF-DAB via in situ replacing the benzidine linkers in TP-COF-BZ with 1,4-diaminobenzene linkers.

17.
Chem Commun (Camb) ; 53(25): 3531-3534, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28289737

ABSTRACT

A bifunctional squaramide-catalyzed reaction of azlactones with o-quinone methides in situ generated from 2-(1-tosylalkyl)-phenols has been successfully developed under basic conditions, providing an efficient and mild access to chiral dihydrocoumarins bearing adjacent tertiary and quaternary stereogenic centers in high yields with excellent diastereo- and enantioselectivities.

18.
Org Biomol Chem ; 15(6): 1325-1328, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28102406

ABSTRACT

An efficient access to optically active sulfahydantoins, 4-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides, was developed through palladium-catalyzed asymmetric hydrogenation of the corresponding cyclic N-sulfonylketimines with up to 98% ee.

19.
Chem Commun (Camb) ; 52(78): 11704-11707, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27711456

ABSTRACT

A strategy to construct covalent organic frameworks (COFs) bearing two different kinds of pores has been developed, by which two dual-pore COFs were fabricated through the condensation reactions of two D2h symmetrical building blocks. The COFs exhibit good adsorption capacities for CO2 and H2.

20.
Chemistry ; 22(49): 17784-17789, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27778380

ABSTRACT

Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple-linking-site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3 -symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as-prepared heteropore COFs have hollow-spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.

SELECTION OF CITATIONS
SEARCH DETAIL
...