Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(9): uhad159, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719271

ABSTRACT

The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.

2.
Hortic Res ; 7: 12, 2020.
Article in English | MEDLINE | ID: mdl-32025315

ABSTRACT

Citrus is one of the most important commercial fruit crops worldwide. With the vast genomic data currently available for citrus fruit, genetic relationships, and molecular markers can be assessed for the development of molecular breeding and genomic selection strategies. In this study, to permit the ease of access to these data, a web-based database, the citrus genomic variation database (CitGVD, http://citgvd.cric.cn/home) was developed as the first citrus-specific comprehensive database dedicated to genome-wide variations including single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs). The current version (V1.0.0) of CitGVD is an open-access resource centered on 1,493,258,964 high-quality genomic variations and 84 phenotypes of 346 organisms curated from in-house projects and public resources. CitGVD integrates closely related information on genomic variation annotations, related gene annotations, and details regarding the organisms, incorporating a variety of built-in tools for data accession and analysis. As an example, CitGWAS can be used for genome-wide association studies (GWASs) with SNPs and phenotypic data, while CitEVOL can be used for genetic structure analysis. These features make CitGVD a comprehensive web portal and bioinformatics platform for citrus-related studies. It also provides a model for analyzing genome-wide variations for a wide range of crop varieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...