Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(6): 1502-1505, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290349

ABSTRACT

The development of laser-induced graphene (LIG) has been regarded as an effective method for satisfying the substantial requirements for the scalable fabrication of graphene-based electrode materials. Despite the rapid progress in fabricating LIG-based supercapacitors, the incompatibility between material modification and the device planarization process remains a challenging problem to be resolved. In this study, we demonstrate the attributes of novel LIG-MXene (LIG-M) composite electrodes for flexible planar supercapacitors fabricated by direct laser writing (DLW) of MXene-coated polyimide (PI) films. During the DLW process, PI was transformed into LIG, while MXene was simultaneously introduced to produce LIG-M. Combining the porous structure of LIG and the high conductivity of MXene, the as-prepared LIG-M-based supercapacitor exhibited superior specific capacitance, five times higher than that of the pristine LIG-based supercapacitor. The enhanced capacitance of LIG-M also benefited from the pseudocapacitive performance of the abundant active sites offered by MXene. Moreover, the planar LIG-M-based device delivered excellent cycling stability and flexibility. No significant performance degradation was observed after bending tests. Arbitrary electrode patterns could be obtained using the DLW technique. The patterned in-series LIG-M supercapacitor was able to power a light-emitting diode, demonstrating significant potential for practical applications.

2.
Front Chem ; 7: 464, 2019.
Article in English | MEDLINE | ID: mdl-31316973

ABSTRACT

Here, we reported an ingenious fabrication of moisture responsive graphene-based actuator via unilateral two-beam laser interference (TBLI) treatment of graphene oxide (GO) papers. TBLI technique has been recognized as a representative photoreduction and patterning strategy for hierarchical structuring of GO. The GO paper can be reduced and cut into grating-like periodic reduced graphene oxide (RGO) microstructures due to laser ablation effect. However, the lower light transmittance of the thick GO paper and the corresponding thermal relaxation phenomenon make it impossible to trigger complete reduction, leading to the formation of the anisotropic GO/reduced GO (RGO) bilayer structure. Interestingly, the RGO side that feature lower OCGs and higher roughness shows strong water adsorption due to the formation of micronanostructures. Due to the different water adsorption capacities of the two sides, a flower moisture-responsive actuator has been fabricated, which exhibits "opening" and "closing" behavior under different humidity conditions.

3.
Opt Lett ; 44(7): 1714-1717, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933129

ABSTRACT

Herein, we report a simple laser holography technology for hierarchically structuring and synchronous photoreduction of graphene oxides (GO), toward the development of efficient graphene-based electrodes for supercapacitor applications in cost effectively manners. Hierarchical micro-nanostructures, formed due to laser treatment induced photoreduction and ablation effect. Interestingly, both the morphology and reduction degree of the laser holography reduced GO (LHRGO) show strong dependence on the laser intensity, providing the feasibility for controlling the micro-nanostructures, chemical composition, and the conductivity of the graphene electrodes. Furthermore, the supercapacitors based on LHRGO show higher capacitance values and better electrochemical performance compared to that based on thermal reduced GO (TRGO) of same reduction level. Photoredution and micro-nanostructuring of GO using laser holography may hold great promise for production of effective carbon-based electrodes towards practical applications in energy storage devices.

4.
ACS Appl Mater Interfaces ; 11(14): 13742-13751, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30848595

ABSTRACT

Soft actuators have tremendous applications in diverse fields. Facile preparation, rapid actuation, and versatile actions are always pursued when developing new types of soft actuators. In this paper, we present a facile method integrating laser etching and mechanical cutting to prepare Janus actuators driven by oil. A Janus film with superhydrophobic and hydrophobic sides was fabricated successfully. By cutting the functional layer at the desired positions, a number of quintessential oil-driven soft devices were demonstrated. Furthermore, Janus actuators with surfaces of different wettabilities exhibited different swelling behaviors, and different media manifested different surface extensions; thus, these actuators are promising candidates for soft actuators and also realized on-off switchability between an oil/water mixture and ethanol. This study offers novel insight into the design of soft actuators, and this insight may be helpful for developing an oil-driven soft actuator that can be operated like a human finger to manipulate any object and extending stimuli-responsive applications for soft robotics.

5.
Langmuir ; 35(3): 815-823, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30563345

ABSTRACT

Inspired from fish scales that exhibit unique underwater superoleophobicity, artificial porous membranes featuring similar wettability have been successfully developed for oil-water separation. However, most of the superoleophobic meshes are workable only for underwater oil/water separation and become disabled in air. In this article, we reported the facile fabrication of underwater superoleophobic kraft mesh and demonstrated efficient oil-water separation using kraft mesh origamis. Kraft paper that features porosity, natural hydrophilicity, and relatively high elasticity and tear resistance has been found to be an ideal candidate for developing underwater superoleophobic origami. Direct laser drilling has been employed to make microhole arrays on the kraft paper, forming a flexible mesh. The hydrophilic nature and the hierarchical microstructures that consist of microhole arrays and porous microfiber networks make the resultant kraft mesh superoleophobic underwater, enabling oil-water separation. More importantly, the kraft mesh can retain a large amount of water (2.5 times its weight under dry conditions) owing to its porous and hydrophilic structure. Thus, the wet kraft mesh became a slippery surface for oil droplets when it was taken out of the water. This unique feature makes it possible to directly fish out oil droplets from water using a simple kraft mesh origami. Direct laser drilling of paper mesh for flexible origami may open up a new route to the rational design and fabrication of oil-water separation devices.

6.
Nanoscale ; 10(34): 16127-16137, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30117515

ABSTRACT

Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials in situ cheaply and rapidly by processes that can be easily scaled and automated.

7.
ACS Appl Mater Interfaces ; 10(21): 18416-18425, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29722522

ABSTRACT

Controlling the wettability of graphene and its derivatives is critical for broader applications. However, the dynamic dewetting performance of graphene is usually overlooked. Currently, superhydrophobic graphene with an anisotropic wettability is rare. Inspired by natural reed leaves, we report an ingenious fabrication process combining photolithography and laser holography technologies to create biomimetic graphene surfaces that demonstrate anisotropic wettability along two directions of grooved hierarchical structures, which are similar to reed leaf veins. Microgrooved structures with a period of 200 µm were fabricated via photolithography to endow the substrate with an obvious anisotropic wettability. Two-beam laser interference treatments of the graphene oxide (GO) film on the grooved substrate removed most of the hydrophilic oxygen-containing groups on the GO sheets and increased the surface roughness by introducing additional hierarchical micro-nanostructures. The combined effects endowed the resultant graphene films with a unique anisotropic superhydrophobicity similar to that of reed leaves. Superhydrophobic graphene surfaces with anisotropic antiwetting behavior might allow further innovations based on graphene in the fields of bionics and electronics.

8.
Nanoscale ; 10(8): 3813-3822, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29412200

ABSTRACT

We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.

9.
Nanoscale ; 9(45): 17933-17938, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29124264

ABSTRACT

We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.

10.
Opt Lett ; 42(17): 3403-3406, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957048

ABSTRACT

We reported here a facile fabrication of flexible graphene-based field effect transistors (FETs) by sunlight reduction of graphene oxide (GO) as channel material. As a mask-free and chemical-free method, sunlight photoreduction of GO without the use of any complex equipments is simple and green. The resultant FET demonstrated excellent electrical properties (e.g., an optimized Ion/Ioff ratio of 111, hole mobility of 0.17 cm2 V-1 s-1), revealing great potential for development of flexible microelectrics. Additionally, since the reduced GO channel could be fabricated by sunlight treatment between two pre-patterned electrodes, the process features post-fabrication capability, which makes it possible to integrate graphene-based devices with given device structures.

11.
Sci Rep ; 7(1): 12056, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935872

ABSTRACT

We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.

12.
Chem Rec ; 16(3): 1244-55, 2016 06.
Article in English | MEDLINE | ID: mdl-27062335

ABSTRACT

We report herein the engineering of the surface/interface properties of graphene oxide (GO) films by controllable photoreduction treatment. In our recent works, typical photoreduction processes, including femtosecond laser direct writing (FsLDW), laser holographic lithography, and controllable UV irradiation, have been employed to make conductive reduced graphene oxide (RGO) microcircuits, hierarchical RGO micro-nanostructures with both superhydrophobicity and structural color, as well as moisture-responsive GO/RGO bilayer structures. Compared with other reduction protocols, for instance, chemical reduction and thermal annealing, the photoreduction strategy shows distinct advantages, such as mask-free patterning, chemical-free modification, controllable reduction degree, and environmentally friendly processing. These works indicate that the surface and interface engineering of GO through controllable photoreduction of GO holds great promise for the development of various graphene-based microdevices.

13.
Sci Rep ; 5: 17522, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26659254

ABSTRACT

A facile production of highly porous graphene foam by using flame treatment of graphene oxide (GO) is proposed. Highly porous architectures with randomly distributed micro-crack and micro-slit were produced due to the high temperature induced ruinous reduction and rapid expansion of GO. Synchronously, abundant oxygen-containing groups (OCGs) on GO sheets could be effectively removed after flame treatment, which renders significantly increased conductivity to the resultant flame reduced GO (FR-GO). The synergistic effect of micro/nanostructuring and the OCGs removal makes FR-GO a promising candidate for electrode materials. Compared with chemically reduced GO (CR-GO), FR-GO delivers much higher specific capacity. It gives us some hints that flame treatment of graphene-based material is a smart strategy for cost-effective production of anode materials for commercial application.

14.
ACS Appl Mater Interfaces ; 7(49): 27059-65, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26595745

ABSTRACT

Reported here is the fabrication of reduced graphene oxide (RGO) grating structures by two-beam laser interference (TBLI) for the development of highly efficient SERS substrates via simple physical vapor deposition (PVD) coating of silver. TBLI has been utilized to make hierarchical RGO grating structures with microscale gratings and nanoscale folders through a laser treatment induced ablation and photoreduction process. The hierarchical structures contribute to the formation of plasmonic structures after silver coating, giving rise to the formation of plenty of SERS "hot spots", while the RGO substrate would provide chemical enhancement of Raman signal through interaction with analytes molecules. The significantly increased roughness with respect to the hierarchical structures in combination with the removal of hydrophilic oxygen-containing groups endow the resultant substrates with unique superhydrophobicity, which leads to the enrichment of analytes and further lowers the detection limit. The synergistic effects make the silver coated RGO gratings a highly efficient SERS substrate; in the detection of Rhodamine B, our SERS substrates showed high SERS enhancement and good reproducibility, a detection limit of 10(-10) M has been achieved.

15.
Adv Mater ; 27(2): 332-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25327686

ABSTRACT

A facile and cost-effective preparation of moisture-responsive graphene bilayer paper by focused sunlight irradiation is reported. The smart graphene paper shows moisture-responsive properties due to selective adsorption of water molecules, leading to controllable actuation under humid conditions. In this way, graphene-based moisture-responsive actuators including a smart claw, an orientable transporter, and a crawler paper robot are successfully developed.

18.
Chem Commun (Camb) ; 48(11): 1680-2, 2012 Feb 04.
Article in English | MEDLINE | ID: mdl-22187098

ABSTRACT

Silver microflower arrays constructed by upright nanoplates and attached nanoparticles were fabricated inside a microfluidic channel, thus a robust catalytic microreactor for allowing in situ SERS monitoring was proposed. On-chip catalytic reduction shows that the silver microflowers have high catalytic activity and SERS enhancement.

19.
Electrophoresis ; 32(23): 3378-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22072533

ABSTRACT

A surface-enhanced Raman scattering (SERS)-active microfluidic device with tunable surface plasmon resonances is presented here. It is constructed by silver grating substrates prepared by two-beam laser interference of photoresists and subsequent metal evaporation coating, as well as PDMS microchannel derived from soft lithography. By varying the period of gratings from 200 to 550 nm, surface plasmon resonances (SPRs) from the metal gratings could be tuned in a certain range. When the SPRs match with the Raman excitation line, the highest enhancement factor of 2×10(7) is achieved in the SERS detection. The SERS-active microchannel with tunable SPRs exhibits both high enhancement factor and reproducibility of SERS signals, and thus holds great promise for applications of on-chip SERS detection.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Dimethylpolysiloxanes/chemistry , Microscopy, Atomic Force , Phenols/chemistry , Rhodamines/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...