Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Front Genet ; 15: 1335839, 2024.
Article in English | MEDLINE | ID: mdl-39350769

ABSTRACT

Background: Previous studies have suggested an association between Type 1 diabetes (T1D) and autoimmune diseases (AIDs), but the causal relationship remains unclear. Therefore, this study utilizes publicly available Genome-Wide Association Studies (GWAS) databases and employs a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between T1D and systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). Methods: Summary GWAS data for T1D, SLE, RA, and IBD were downloaded from open GWAS databases and the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). We employed a series of methods to select instrumental variables closely related to T1D. To enhance the reliability of our conclusions, we applied multiple robust analytical methods, with the inverse variance weighted (IVW) method as the primary approach. Validation and meta-analysis were conducted using the FinnGen consortium. Additionally, we assessed heterogeneity, pleiotropy, and sensitivity to ensure the robustness of our conclusions. Results: A potential causal association was found between T1D and SLE (OR = 1.37, 95% CI = 1.26 - 1.49, P < 0.001), which was further confirmed by meta-analysis. Similarly, a potential causal association was found between T1D and RA (OR = 1.32, 95% CI = 1.17 - 1.50, P < 0.001), and this was also confirmed by meta-analysis. Although the association between T1D and IBD showed P < 0.05, the leave-one-out test did not pass, and further meta-analysis indicated no significant statistical association between them. Conclusion: Our study reveals the relationships between T1D and three clinically common autoimmune diseases (SLE, RA, and IBD). This research supplements previous studies and provides a reference for future clinical work.

2.
Nano Lett ; 24(35): 10883-10891, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39172995

ABSTRACT

The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 µm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.


Subject(s)
Electric Conductivity , Polymers , Wearable Electronic Devices , Humans , Polymers/chemistry , Pyrroles/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Skin/chemistry , Body Temperature Regulation , Titanium/chemistry , Robotics
3.
Small ; : e2402564, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087370

ABSTRACT

For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high-density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RLmin) of -64.54 dB and an absorption bandwidth of 5.60 GHz at a thickness of 1.77 mm. This work reveals the microscale mechanism of magnetic confinement-induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.

4.
Nat Commun ; 15(1): 6138, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033166

ABSTRACT

Integration of functional fillers into liquid metals (LM) induces rheology modification, enabling the free-form shaping of LM at the micrometer scale. However, integrating non-chemically modified low-dimensional materials with LM to form stable and uniform dispersions remain a great challenge. Herein, we propose a solvent-assisted dispersion (SAD) method that utilizes the fragmentation and reintegration of LM in volatile solvents to engulf and disperse fillers. This method successfully integrates MXene uniformly into LM, achieving better internal connectivity than the conventional dry powder mixing (DPM) method. Consequently, the MXene/LM (MLM) coating exhibits high electromagnetic interference (EMI) shielding performance (105 dB at 20 µm, which is 1.6 times that of coatings prepared by DPM). Moreover, the rheological characteristic of MLM render it malleable and facilitates direct printing and adaptation to diverse structures. This study offers a convenient method for assembling LM with low-dimensional materials, paving the way for the development of multifunctional soft devices.

5.
Front Immunol ; 15: 1415834, 2024.
Article in English | MEDLINE | ID: mdl-38933272

ABSTRACT

Introduction: Bispecific antibodies (BsAbs) can simultaneously target two epitopes of different antigenic targets, bringing possibilities for diversity in antibody drug design and are promising tools for the treatment of cancers and other diseases. T-cell engaging bsAb is an important application of the bispecific antibody, which could promote T cell-mediated tumor cell killing by targeting tumor-associated antigen (TAA) and CD3 at the same time. Methods: This study comprised antibodies purification, Elisa assay for antigen binding, cytotoxicity assays, T cell activation by flow cytometry in vitro and xenogenic tumor model in vivo. Results: We present a novel bsAb platform named PHE-Ig technique to promote cognate heavy chain (HC)-light chain (LC) pairing by replacing the CH1/CL regions of different monoclonal antibodies (mAbs) with the natural A and B chains of PHE1 fragment of Integrin ß2 based on the knob-in-hole (KIH) technology. We had also verified that PHE-Ig technology can be effectively used as a platform to synthesize different desired bsAbs for T-cell immunotherapy. Especially, BCMA×CD3 PHE-Ig bsAbs exhibited robust anti-multiple myeloma (MM) activity in vitro and in vivo. Discussion: Moreover, PHE1 domain was further shortened with D14G and R41S mutations, named PHE-S, and the PHE-S-based BCMA×CD3 bsAbs also showed anti BCMA+ tumor effect in vitro and in vivo, bringing more possibilities for the development and optimization of different bsAbs. To sum up, PHE1-based IgG-like antibody platform for bsAb construction provides a novel strategy for enhanced T-cell immunotherapy.


Subject(s)
Antibodies, Bispecific , T-Lymphocytes , Antibodies, Bispecific/immunology , Animals , Humans , T-Lymphocytes/immunology , Mice , Immunoglobulin G/immunology , Immunotherapy/methods , Cell Line, Tumor , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Xenograft Model Antitumor Assays , Lymphocyte Activation/immunology , CD3 Complex/immunology , Antigens, Neoplasm/immunology
6.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G80-G92, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38742280

ABSTRACT

Acute pancreatitis (AP) is an acute inflammatory reaction of the pancreatic tissue, which involves auto-digestion, edema, hemorrhage, and necrosis. AP can be categorized into mild, moderately severe, and severe AP, with severe pancreatitis also referred to as acute necrotizing pancreatitis (ANP). ANP is characterized by the accumulation of necrotic material in the peritoneal cavity. This can result in intestinal injury. However, the mechanism of ANP-associated intestinal injury remains unclear. We established an ANP-associated intestinal injury rat model (ANP-IR model) by injecting pancreatitis-associated ascites fluid (PAAF) and necrotic pancreatic tissue at various proportions into the triangular area formed by the left renal artery and ureter. The feasibility of the ANP-IR model was verified by comparing the similar changes in indicators of intestinal inflammation and barrier function between the two rat models. In addition, we detected changes in apoptosis levels and YAP protein expression in the ileal tissues of rats in each group and validated them in vitro in rat epithelial crypt cells (IEC-6) to further explore the potential injury mechanisms of ANP-associated intestinal injury. We also collected clinical data from patients with ANP to validate the effects of PAAF and pancreatic necrosis on intestinal injury. Our findings offer a theoretical basis for restricting the buildup of peritoneal necrosis in individuals with ANP, thus promoting the restoration of intestinal function and enhancing treatment efficacy. The use of the ANP-IR model in further studies can help us better understand the mechanism and treatment of ANP-associated intestinal injury.NEW & NOTEWORTHY We constructed a rat model of acute necrotizing pancreatitis-associated intestinal injury and verified its feasibility. In addition, we identified the mechanism by which necrotic pancreatic tissue and pancreatitis-associated ascites fluid (PAAF) cause intestinal injury through the HIPPO signaling pathway.


Subject(s)
Apoptosis , Disease Models, Animal , Pancreatitis, Acute Necrotizing , Rats, Sprague-Dawley , YAP-Signaling Proteins , Animals , Pancreatitis, Acute Necrotizing/pathology , Pancreatitis, Acute Necrotizing/metabolism , Pancreatitis, Acute Necrotizing/complications , Rats , Male , YAP-Signaling Proteins/metabolism , Humans , Pancreas/pathology , Pancreas/metabolism , Ascites/metabolism , Ascites/pathology , Cell Line , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
7.
Nat Commun ; 15(1): 3902, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724527

ABSTRACT

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.


Subject(s)
Nanowires , Polymers , Nanowires/chemistry , Animals , Mice , Polymers/chemistry , Cell Line, Tumor , Gadolinium/chemistry , Gadolinium/pharmacology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/immunology , Female , Humans , Vaccination/methods , Neoplasms/immunology
8.
Haematologica ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813732

ABSTRACT

Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, yet the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/plateletspecific knockout of PALLD in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain (DBD) and Src homology 2 (SH2) domain via Immunoglobulin domain 3 (Ig3). Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.

9.
Front Nutr ; 11: 1290299, 2024.
Article in English | MEDLINE | ID: mdl-38445206

ABSTRACT

Background and aims: The cachexia index (CXI) is a novel biomarker for estimating cancer cachexia. The cachexia index based on hand-grip strength (H-CXI) has been recently developed as a simple proxy for CXI. The present study aims to compare both the H-CXI and CXI for the prediction of cancer cachexia and postoperative outcomes in patients who underwent radical colectomy for colorectal cancer. Methods: Patients who underwent radical operations for colorectal cancer were included in this study. Cancer cachexia was diagnosed according to the international consensus outlined by Fearon et al. The cachexia index (CXI) was calculated as [skeletal muscle index (SMI) × serum albumin/neutrophil-to-lymphocyte ratio (NLR)]. The H-CXI was calculated as [hand-grip strength (HGS)/height2 × serum albumin/NLR]. The SMI was measured based on the preoperative CT images at the third lumbar vertebra (L3) level. HGS was measured before surgery. Results: From July 2014 to May 2021, a total of 1,411 patients were included in the present study, of whom 361 (25.6%) were identified as having cancer cachexia. Patients with cachexia had a lower CXI (p < 0.001) and lower H-CXI (p < 0.001) than those without cachexia. A low CXI but not low H-CXI independently predicted cancer cachexia in the multivariate analysis (OR 1.448, p = 0.024). Both a low CXI (HR 1.476, p < 0.001 for OS; HR 1.611, p < 0.001 for DFS) and low H-CXI (HR 1.369, p = 0.007 for OS; HR 1.642, p < 0.001 for DFS) were independent predictors for overall survival (OS) and disease-free survival (DFS) after adjusting for the same covariates. A low H-CXI but not low CXI was an independent risk factor for postoperative complications (OR 1.337, p = 0.044). No significant association was found between cancer cachexia and postoperative complications. Conclusion: The CXI and H-CXI exhibited better prognostic value than cancer cachexia for the prediction of postoperative outcomes in patients who underwent radical colectomy for colorectal cancer. The H-CXI was a superior index over the CXI in predicting short-term clinical outcomes, whereas the CXI demonstrated a closer correlation with Fearon's criteria for cancer cachexia. Ideal tools for the assessment of cancer cachexia should incorporate not only weight loss but also muscle mass, physical function, and inflammatory state.

10.
Nutrition ; 122: 112391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460446

ABSTRACT

OBJECTIVES: Skeletal muscle index (SMI) is insufficient for evaluating muscle in obesity, and muscle attenuation (MA) may be a preferred indicator. This study aimed to investigate whether MA has greater prognostic value than SMI in gastric cancer patients with overweight and obesity. METHODS: Clinical parameters of 1312 patients with gastric cancer who underwent radical gastrectomy were prospectively collected between 2013 and 2019. MA and SMI were analyzed by computed tomography scan. Overweight/obesity was defined as body mass index (BMI) ≥24 kg/m2. The hazard ratio (HR) for death was calculated using Cox regression analysis. RESULTS: Among all patients, 405 were identified as overweight and obese, and 907 were identified as normal and underweight. MA was inversely associated with BMI and visceral fat area. Among the 405 patients with overweight and obesity, 212 patients (52%) were diagnosed with low MA. In the overweight/obese group, MA was an independent predictor for overall survival (HR, 1.610; P = 0.021) in multivariate Cox regression analyses, whereas SMI did not remain in the model. In the normal/underweight group, both low MA (HR, 1.283; P = 0.039) and low SMI (HR, 1.369; P = 0.008) were independent factors of overall survival. Additionally, 318 patients were identified as having visceral obesity in the overweight/obese group, and low MA was also an independent prognostic factor for survival in these patients (HR, 1.765; P = 0.013). CONCLUSION: MA had a higher prognostic value than SMI in overweight and obese patients with gastric cancer after radical gastrectomy.


Subject(s)
Sarcopenia , Stomach Neoplasms , Humans , Overweight/complications , Overweight/pathology , Prognosis , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Sarcopenia/complications , Thinness/complications , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Obesity/complications , Obesity/pathology , Retrospective Studies
11.
J Colloid Interface Sci ; 663: 825-833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447397

ABSTRACT

Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 µmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.

12.
Haematologica ; 109(7): 2256-2270, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38299614

ABSTRACT

Breakthrough treatment for refractory and relapsed immune thrombocytopenia (ITP) patients is urgently needed. Autoantibody- mediated platelet clearance and megakaryocyte dysfunction are important pathogenic mediators of ITP. Glycoprotein (GP) Ibα is a significant autoantigen found in ITP patients and is associated with poor response to standard immunosuppressive treatments. Here, we engineered human T cells to express a chimeric autoantibody receptor (CAAR) with GPIbα constructed into the ligand-binding domain fused to the CD8 transmembrane domain and CD3ζ-4-1BB signaling domains. We performed cytotoxicity assays to assess GPIbα CAAR T-cell selective cytolysis of cells expressing anti-GPIbα B-cell receptors in vitro. Furthermore, we demonstrated the potential of GPIbα CAAR T cells to persist and precisely eliminate GPIbα-specific B cells in vivo. In summary, we present a proof of concept for CAAR T-cell therapy to eradicate autoimmune B cells while sparing healthy B cells with GPIbα CAAR T cells that function like a Trojan horse. GPIbα CAAR T-cell therapy is a promising treatment for refractory and relapsed ITP patients.


Subject(s)
B-Lymphocytes , Platelet Glycoprotein GPIb-IX Complex , Purpura, Thrombocytopenic, Idiopathic , T-Lymphocytes , Humans , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/therapy , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Mice , Autoantibodies/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Autoimmunity
13.
Small ; 20(9): e2306698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840390

ABSTRACT

Hierarchical architecture engineering is desirable in integrating the physical-chemical behaviors and macroscopic properties of materials, which present great potential for developing multifunctional microwave absorption materials. However, the intrinsic mechanisms and correlation conditions among cellular units have not been revealed, which are insufficient to maximize the fusion of superior microwave absorption (MA) and derived multifunctionality. Herein, based on three models (disordered structure, porous structure, lamellar structure) of structural units, a range of MXene-aerogels with variable constructions are fabricated by a top-down ice template method. The aerogel with lamellar structure with a density of only 0.015 g cm-3 exhibits the best MA performance (minimum reflection loss: -53.87 dB, effective absorption bandwidth:6.84 GHz) at a 6 wt.% filling ratio, which is preferred over alternative aerogels with variable configurations. This work elucidates the relationship between the hierarchical architecture and the superior MA performance. Further, the MXene/CoNi Composite aerogel with lamellar structure exhibits >90% compression stretch after 1000 cycles, excellent compressive properties, and elasticity, as well as high hydrophobicity and thermal insulation properties, broadening the versatility of MXene-based aerogel applications. In short, through precise microstructure design, this work provides a conceptually novel strategy to realize the integration of electromagnetic stealth, thermal insulation, and load-bearing capability simultaneously.

14.
Eur J Surg Oncol ; 50(1): 107295, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016248

ABSTRACT

OBJECTIVE: To investigate whether sarcopenia could predict postoperative outcomes in patients with colorectal cancer with Global Leadership Initiative on Malnutrition (GLIM)-defined malnutrition. METHODS: Clinical data of patients who underwent radical resection for colorectal cancer were prospectively collected. Sarcopenia was diagnosed by the combination of low handgrip strength and low muscle quantity or quality as measured by abdominal computed tomography (CT) images. Logistic regression analysis and Cox proportional hazards regression analysis were performed to identify independent predictors for postoperative complications and survival, respectively. RESULTS: A total of 310 patients with colorectal cancer with GLIM-defined malnutrition were included, of which 145 (46.77%) were identified with sarcopenia. Malnutritional patients with sarcopenia had significantly higher incidences of total complications (34.5% versus 15.8%), severe complications (9.7% versus 1.8%), longer lengths of postoperative hospital stay (median, 14 days versus 12 days), and more costs (median, 56,257 RMB versus 49,024 RMB) than those without sarcopenia. Sarcopenia was an independent predictive factor for postoperative complications (OR 2.531, 95% CI 1.451-4.415), overall survival (HR 1.519, 95% CI 1.026-2.248), and disease-free survival (HR 1.847, 95% CI 1.324-2.576). Patients with severe sarcopenia had a higher incidence of severe complications but not total complications or survival than those with not-severe sarcopenia. Moreover, the predictive value of sarcopenia for postoperative complications was attributed to muscle strength and quality but not muscle quantity. CONCLUSION: Sarcopenia predicts postoperative complications and survival in patients with colorectal cancer with GLIM-defined malnutrition. Preoperative assessment of sarcopenia is still necessary when nutritional assessment has been well performed.


Subject(s)
Colorectal Neoplasms , Malnutrition , Sarcopenia , Humans , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Prospective Studies , Hand Strength , Leadership , Risk Factors , Malnutrition/complications , Malnutrition/epidemiology , Malnutrition/diagnosis , Postoperative Complications/etiology , Colorectal Neoplasms/complications , Colorectal Neoplasms/surgery , Nutrition Assessment , Nutritional Status
15.
Adv Mater ; 36(14): e2311135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146773

ABSTRACT

Transition metal carbides/nitrides (MXenes) demonstrate a massive potential in constructing lightweight, multifunctional wearable electromagnetic interference (EMI) shields for application in various fields. Nevertheless, it remains challenging to develop a facile, scalable approach to prepare the MXene-based macrostructures characterized by low density, low thickness, high mechanical flexibility, and high EMI SE at the same time. Herein, the ultrathin MXene/reduced graphene oxide (rGO)/Ag foams with a porifera-inspired hierarchically porous microstructure are prepared by combining Zn2+ diffusion induction and hard template methods. The hierarchical porosity, which includes a mesoporous skeleton and a microporous MXene network within the skeleton, not only exerts a regulatory effect on stress distribution during compression, making the foams rubber-like resistant to wrinkling but also provides more channels for multiple reflections of electromagnetic waves. Due to the interaction between Ag nanosheets, MXene/rGO, and porous structure, it is possible to produce an outstanding EMI shielding performance with the specific surface shielding effectiveness reaching 109152.4 dB cm2 g-1. Furthermore, the foams exhibit multifunctionalities, such as transverse Joule heating, longitudinal heat insulation, self-cleaning, fire resistance, and motion detection. These discoveries open up a novel pathway for the development of lightweight MXene-based materials with considerable application potential in wearable electromagnetic anti-interference devices.

16.
Front Immunol ; 14: 1199896, 2023.
Article in English | MEDLINE | ID: mdl-38022503

ABSTRACT

Background: Previous studies have shown a coexistence phenomenon between systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), but the causal relationship between them is still unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis using publicly available summary statistics data to evaluate whether there was a causal relationship between the two diseases. Methods: Summary statistics for SLE and IBD were downloaded from the Open Genome-Wide Association Study and the International Inflammatory Bowel Disease Genetics Consortium. European and East Asian populations were included in this MR work. We adopted a series of methods to select instrumental variables that are closely related to SLE and IBD. To make the conclusion more reliable, we applied a variety of different analysis methods, among which the inverse variance-weighted (IVW) method was the main method. In addition, heterogeneity, pleiotropy, and sensitivity were assessed to make the conclusions more convincing. Results: In the European population, a negative causal relationship was observed between SLE and overall IBD (OR = 0.94; 95% CI = 0.90, 0.98; P < 0.004) and ulcerative colitis (UC) (OR = 0.93; 95% CI = 0.88, 0.98; P = 0.006). After removing outliers with Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO), the results remained consistent with IVW. However, there was no causal relationship between SLE and Crohn's disease. In the East Asian population, no causal relationship was found between SLE and IBD. Conclusion: Our results found that genetic susceptibility to SLE was associated with lower overall IBD risk and UC risk in European populations. In contrast, no association between SLE and IBD was found in East Asian populations. This work might enrich the previous research results, and it may provide some references for research in the future.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Lupus Erythematosus, Systemic , Humans , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/genetics , East Asian People , Genome-Wide Association Study , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Mendelian Randomization Analysis , European People
17.
Cell Death Discov ; 9(1): 356, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758734

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor and is associated with a poor prognosis. Treatment strategies for PDAC are largely ineffective primarily because of delay in its diagnosis and limited efficacy of systematic treatment. S100A2 is associated with the proliferation, migration, and differentiation of several tumors; however, its effects on PDAC and the associated molecular mechanisms remain to be explored. We studied the mechanisms underlying the effect of S100A2 on epithelial-mesenchymal transition (EMT) and metastasis in PDAC cells. We found that the level of S100A2 remarkably increased and was associated with poor PDAC prognosis. The overexpression of S100A2 in PANC-1 cells also induced EMT, in addition to increasing the invasion and migration of PDAC cells, whereas the knockdown of S100A2 markedly inhibited cell metastasis. Furthermore, S100A2 was found to enhance metastatic abilities in vivo. The overexpression of S100A2 increased SMAD4 expression, whereas the knockdown of S100A2 reduced SMAD4 expression. SMAD4 overexpression could effectively rescue the effects of S100A2 knockdown on EMT. S100A2 mechanistically activated the transforming growth factor (TGF)-ß/Smad2/3 signaling pathway, upregulated SMAD4 expression, induced EMT, and increased PANC-1 cell metastasis. In conclusion, the S100A2/SMAD4 axis modulates EMT to accelerate PDAC development. Our results supplement and enrich the understanding of the pathogenesis underlying PDAC and provide a new theoretical basis and strategy targeting S100A2 for the diagnosis and treatment of PDAC.

18.
Front Neurol ; 14: 1202076, 2023.
Article in English | MEDLINE | ID: mdl-37609653

ABSTRACT

Background: Lower extremity deep vein thrombosis (DVT) is one of the major postoperative complications in patients with ruptured intracranial aneurysms (RIA) who underwent endovascular treatment (EVT). However, patient-specific predictive models are still lacking. This study aimed to construct and validate a nomogram model for estimating the risk of lower extremity DVT for RIA patients who underwent EVT. Methods: This cohort study enrolled 471 RIA patients who received EVT in our institution between 1 January 2020 to 4 February 2022. Perioperative information on participants is collected to develop and validate a nomogram for predicting lower extremity DVT in RIA patients after EVT. Predictive accuracy, discriminatory capability, and clinical effectiveness were evaluated by concordance index (C-index), calibration curves, and decision curve analysis. Result: Multivariate logistic regression analysis showed that age, albumin, D-dimer, GCS score, middle cerebral artery aneurysm, and delayed cerebral ischemia were independent predictors for lower extremity DVT. The nomogram for assessing individual risk of lower extremity DVT indicated good predictive accuracy in the primary cohort (c-index, 0.92) and the validation cohort (c-index, 0.85), with a wide threshold probability range (4-82%) and superior net benefit. Conclusion: The present study provided a reliable and convenient nomogram model developed with six optimal predictors to assess postoperative lower extremity DVT in RIA patients, which may benefit to strengthen the awareness of lower extremity DVT control and supply appropriate resources to forecast patients at high risk of RIA-related lower extremity DVT.

19.
J Thromb Haemost ; 21(11): 3224-3235, 2023 11.
Article in English | MEDLINE | ID: mdl-37473846

ABSTRACT

BACKGROUND: Megakaryocyte differentiation and platelet production disorders are the main causes of thrombocythemia and thrombocytopenia and lead to thrombosis or hemorrhage. Branched-chain amino acids (BCAAs) are essential nutrients that regulate important metabolic signals. BCAA administration could also increase platelet activation and promote the risk of thrombosis. OBJECTIVES: To unveil the role of BCAAs in thrombocytopoiesis. METHODS: BCAA-fed mice and megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice were used to study the role of BCAAs in thrombocytopoiesis. RESULTS: In this study, we found that BCAA diet could facilitate megakaryocyte differentiation and platelet production. Meanwhile, megakaryocyte/platelet-specific branched-chain α-keto acid dehydrogenase E1α subunit-deficient mice developed thrombocythemia, which was mainly caused by the excessive differentiation of megakaryocytes and proplatelet biogenesis. Moreover, the use of BT2, the agonist of BCAA catabolism, could affect proplatelet formation (PPF) and megakaryocyte polyploidization, as well as ameliorating the thrombocythemia of BCAA-fed mice. CONCLUSION: We found that deficiency in BCAA catabolism led to the activation of p70S6K/mammalian target of rapamycin (mTOR) signaling, megakaryocyte over differentiation, and the acceleration of PPF. Activating BCAA metabolism with BT2 could inhibit mTOR signaling, reduce PPF, and ameliorate thrombocythemia in BCAA-fed mice. Therefore, this study reveals a novel role of BCAAs in megakaryocyte differentiation and platelet production, suggesting that targeting BCAA-mediated p70S6K/mTOR signaling may be a potential strategy for the treatment of thrombocytopenia or thrombocythemia.


Subject(s)
Thrombocytopenia , Thrombocytosis , Thrombosis , Mice , Animals , Amino Acids, Branched-Chain/metabolism , Ribosomal Protein S6 Kinases, 70-kDa , Thrombopoiesis , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism
20.
Adv Sci (Weinh) ; 10(21): e2301599, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150852

ABSTRACT

Demand for lightweight and efficient electromagnetic wave (EW) absorbers continues to increase with technological advances in highly integrated electronics and military applications. Although MXene-based EW absorbers have been extensively developed, more efficient electromagnetic coupling and thinner thickness are still essential. Recently, ordered heterogeneous materials have emerged as a novel design concept to address the bottleneck faced by current material development. Herein, an ordered heterostructured engineering to assemble Ti3 CNTx MXenes/Aramid nanofibers/FeCo@SiO2 nanobundles (FS) aerogel (AMFS-O) is proposed, where the commonly disordered magnetic composition is transformed to ordered FS arrays that provide more powerful magnetic loss capacity. Experiments and simulations reveal that the anisotropy magnetic networks enhance the response to the magnetic field vector of EW, which effectively improves the impedance matching and makes the reflection loss (RL) peaks shift to lower frequencies, leading to the thinner matching thickness. Furthermore, the temperature stability and excellent compressibility of AMFS-O expand functionalized applications. The synthesized AMFS-O achieves full-wave absorption in X and Ku-band (8.2-18.0 GHz) at 3.0 mm with a RLmin of -41 dB and a low density of 0.008 g cm-3 . These results suggest that ordered heterostructured engineering is an effective strategy for designing high-performance multifunctional EW absorbers.

SELECTION OF CITATIONS
SEARCH DETAIL