Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
Microbiome ; 12(1): 88, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741135

ABSTRACT

BACKGROUND: During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS: During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS: Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.


Subject(s)
Lakes , Microbiota , Microcystis , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , China , Lakes/microbiology , Nutrients/metabolism , Phototrophic Processes , Aerobiosis , Eutrophication , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Nitrogen/metabolism , Carbon/metabolism
2.
ACS Appl Mater Interfaces ; 16(14): 17493-17505, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38563126

ABSTRACT

The long-term stability of Li-S batteries is significantly compromised by the shuttle effect and insulating nature of active substance S, constraining their commercialization. Developing efficient catalysts to mitigate the shuttle effect of lithium polysulfides (LiPSs) is still a challenge. Herein, we designed and synthesized a rose-like cobalt-nickel bimetallic oxide catalyst NiCo2O4-OV enriched with oxygen vacancies (OV) and verified the controllable synthesis of different contents of OV. Introducing the OV proved to be an efficient approach for controlling the electronic structure of the electrocatalyst and managing the absorption/desorption processes on the reactant surface, thereby addressing the challenges posed by the LiPS shuttle effect and sluggish transformation kinetics in Li-S batteries. In addition, we investigated the effect of OV in NiCo2O4 on the adsorption capacity of LiPSs using adsorption experiments and density functional theory (DFT) simulations. With the increase in the level of OV, the binding energy between the two is enhanced, and the adsorption effect is more obvious. NiCo2O4-OV contributes to the decomposition of Li2S and diffusion of Li+ in Li-S batteries, which promotes the kinetic process of the batteries.

3.
Environ Pollut ; 346: 123545, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346632

ABSTRACT

Microplastic (MP) contamination is a growing global concern, with lake sediments serving as a significant sink for MP due to both anthropogenic and natural activities. Given the increasing evidence of MP accumulation in sediments, it was crucial to assess their influence on sediment erosion resistance, which directly affected sediment resuspension. To fill this gap, this study focused on the effect of MP on the sediments rheological properties. After 60-day experiments, it was found that MP addition into sediments reduced sediment viscosity, yield stress, and flow point shear stress. Meanwhile, MPs also significantly altered sediment properties and extracellular polymer composition. MP addition reduced extracellular polymeric substances production and cation exchange capacity, which then worked together and led to a weak sediment structure. Seemingly, MPs changed fluid sediment characteristics and caused stronger fluidity under less shear force. Consequently, the accumulation of MP might facilitate the resuspension of sediments under smaller wind and wave disturbances. This study provided novel insights into the direct impact of MPs on sediment physical properties using rheology, thereby enhancing our understanding of the environmental behavior of MPs in lake ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/chemistry , Lakes/chemistry , Plastics , Geologic Sediments/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring
5.
Small ; 20(5): e2304518, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752744

ABSTRACT

Designing reliable and energy-efficient memristors for artificial synaptic arrays in neuromorphic computing beyond von Neumann architecture remains a challenge. Here, memristors based on emerging layered nickel phosphorus trisulfide (NiPS3 ) are reported that exhibit several favorable characteristics, including uniform bipolar nonvolatile switching with small operating voltage (<1 V), fast switching speed (< 20 ns), high On/Off ratio (>102 ), and the ability to achieve programmable multilevel resistance states. Through direct experimental evidence using transmission electron microscopy and energy dispersive X-ray spectroscopy, it is revealed that the resistive switching mechanism in the Ti/NiPS3 /Au device is related to the formation and dissolution of Ti conductive filaments. Intriguingly, further investigation into the microstructural and chemical properties of NiPS3 suggests that the penetration of Ti ions is accompanied by the drift of phosphorus-sulfur ions, leading to induced P/S vacancies that facilitate the formation of conductive filaments. Furthermore, it is demonstrated that the memristor, when operating in quasi-reset mode, effectively emulates long-term synaptic weight plasticity. By utilizing a crossbar array, multipattern memorization and multiply-and-accumulate (MAC) operations are successfully implemented. Moreover, owing to the highly linear and symmetric multiple conductance states, a high pattern recognition accuracy of ≈96.4% is demonstrated in artificial neural network simulation for neuromorphic systems.

6.
Microb Ecol ; 87(1): 24, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38159125

ABSTRACT

Drastic changes in hydrological conditions within floodplain ecosystems create distinct microbial habitats. However, there remains a lack of exploration regarding the variations in microbial function potentials across the flooding and drought seasons. In this study, metagenomics and environmental analyses were employed in floodplains that experience hydrological variations across four seasons. Analysis of functional gene composition, encompassing nitrogen, carbon, and sulfur metabolisms, revealed apparent differences between the flooding and drought seasons. The primary environmental drivers identified were water level, overlying water depth, submergence time, and temperature. Specific modules, e.g., the hydrolysis of ß-1,4-glucosidic bond, denitrification, and dissimilatory/assimilatory nitrate reduction to ammonium, exhibited higher relative abundance in summer compared to winter. It is suggested that cellulose degradation was potentially coupled with nitrate reduction during the flooding season. Phylogenomic analysis of metagenome-assembled genomes (MAGs) unveiled that the Desulfobacterota lineage possessed abundant nitrogen metabolism genes supported by pathway reconstruction. Variation of relative abundance implied its environmental adaptability to both the wet and dry seasons. Furthermore, a novel order was found within Methylomirabilota, containing nitrogen reduction genes in the MAG. Overall, this study highlights the crucial role of hydrological factors in modulating microbial functional diversity and generating genomes with abundant nitrogen metabolism potentials.


Subject(s)
Microbiota , Water , Nitrates , Microbiota/genetics , Metagenome , Nitrogen/metabolism
7.
Water Res X ; 21: 100197, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37655163

ABSTRACT

Various phosphorus (P)-inactivating materials with a strong capability of immobilizing P in sediment have been developed for lake geoengineering purposes to control internal P pollution. However, unsatisfactory applications have raised concerns about the reliability of the method. This study hypothesized that P migration from sediment to material is a key process regulating the immobilization, which is often neglected by common assessment procedures that assume that the material is closely in contact with sediment (e.g., as mixtures). To verify this hypothesis, 90-day incubation tests were conducted using drinking water treatment residue (DWTR). The results showed that the soluble P in the overlying water of sediment-DWTR mixtures and the mobile P in the mixtures were substantially reduced from the initial period and remained low during the whole incubation tests. However, assessment based on separated samples indicated a gradual P migration from sediment to DWTR for immobilization. Even after 90 days of incubation, mobile P still accounted for ∼5.33% of total P in the separated sediment. Further analysis suggested that using mixtures of sediment with DWTR accelerated P migration during the assessment, leading to a faster P immobilization assessment. Considering the relatively low levels of mobile P in the separated DWTR during incubation, the gradual decrease in mobile P in the separated sediment indicates that sediment P release regulates P immobilization efficiency. Therefore, designing a proper strategy to ensure sufficient time for the material to remain in close contact with the target sediment is critical to reducing uncertainties in lake geoengineering.

8.
Environ Pollut ; 334: 122185, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37442325

ABSTRACT

Magnetic biochar had been used for the bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments. However, the long-term remediation pattern of vertical stratification driven by the application of magnetic biochar and the assembly of microbes had received little attention. In this study, magnetic loofah sponge biochar (MagLsBC), magnetic iron oxide (MagOx) and magnetic coconut shell activated carbon (MagCoAC) were applied for the 900-day remediation of contaminated sediments. Significant (p < 0.05) PAH biodegradation was observed in both the surface and subsurface sediments with MagLsBC addition. However, enhanced PAH biodegradation was observed only in the surface sediments with MagOx and MagCoAC treatments. Magnetotactic bacteria (Magnetococcus) was dominant genera in surface sediments and indigenous PAH degradation bacteria were more abundant in subsurface sediments of MagLsBC relative to other bacterial communities. The network interaction between microbes in surface and subsurface sediments with MagLsBC treatments was a less complex and tighter than those with MagCoAC, MagOx or Control treatments. Long-distance electron transfer rates could be enhanced through cooperation between magnetotactic bacteria and indigenous degradation bacteria, thus accelerating PAH degradation in sediment with MagLsBC treatment, especially in the underlying sediment.


Subject(s)
Luffa , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Charcoal/metabolism , Luffa/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Magnetic Phenomena , Geologic Sediments/microbiology
9.
Water Res ; 243: 120327, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451125

ABSTRACT

The importance of controlling internal phosphorus (P) pollution in lakes has been recognized by scientists, and the application of P-inactivating materials to immobilize sediment P is often considered. However, sediment resuspension, a typical physical process occurring in lakes, has been demonstrated to increase the uncertainty of immobilization. In this study, we explored the characteristics of P immobilization in the horizontal direction under the effects of resuspension using annular flume tests based on drinking water treatment residuals (DWTR). The results showed that resuspension caused the mobile P and bioavailable P to be heterogeneously distributed in sediment planes after DWTR addition, resulting in varying P immobilization efficiencies at different depths. In particular, the coefficient of variation was 14.2-24.5% for mobile P horizontally distributed in the planes, resulting in a range of mobile P decreasing efficiencies at 24.0-47.8%. Further analysis indicated that variations in horizontal distribution were typically due to the varied migration of particles of different sizes. Specifically, P immobilization in sediment planes at different depths was regulated by promoting the migration of <8 µm DWTR after relatively low-intensity disturbance (in surface 0-1 cm sediment). After relatively high-intensity disturbance (in the whole 0-3 cm sediment), immobilization in the horizontal direction was regulated by coupling the migration of >63 µm DWTR (to the bottom) with the mixing of <8 µm DWTR in the sediment plane at different depths. The varying horizontal distributions of total P, resulting from the migration of 16-32 µm sediment, could enhance the heterogeneities of the P immobilization. Thus, the particle size of materials and lake background conditions, for example, the hydrodynamic characteristics and P distributions in differently sized sediments, should be used as key bases to select or develop P-inactivating materials to design proper remediation strategies for controlling internal P pollution in lakes.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Geologic Sediments , Water Pollutants, Chemical/analysis , Eutrophication , Lakes
10.
Small ; 19(34): e2301849, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093540

ABSTRACT

Herein, an integrated structure of single Fe atom doped core-shell carbon nanoboxes wrapped by self-growing carbon nanotubes (CNTs) is designed. Within the nanoboxes, the single Fe atom doped hollow cores are bonded to the shells via the carbon needles, which act as the highways for the electron transport between cores and shells. Moreover, the single Fe atom doped nanobox shells is further wrapped and connected by self-growing carbon nanotubes. Simultaneously, the needles and carbon nanotubes act as the highways for electron transport, which can improve the overall electron conductivity and electron density within the nanoboxes. Finite element analysis verifies the unique structure including both internal and external connections realize the integration of active sites in nano scale, and results in significant increase in electron transfer and the catalytic performance of Fe-N4 sites in both Li2 Sn lithiation and Li2 S delithiation. The Li-S batteries with the double-shelled single atom catalyst delivered the specific capacity of 702.2 mAh g-1 after 550 cycles at 1.0 C. The regional structure design and evaluation method provide a new strategy for the further development of single atom catalysts for more electrochemical processes.

11.
J Environ Manage ; 339: 117880, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37080098

ABSTRACT

Biological lability of dissolved organic matter (DOM) is a crucial indicator of carbon cycle and contaminant attenuation in freshwater lakes. In this study, we employed a multi-stage plug-flow bioreactor and spectrofluorometric indices to characterize the seasonal variations in DOM composition and lability across Poyang Lake (PY) and Lake Taihu (TH), two large freshwater lakes in China with distinct hydrological seasonality. Our findings showed that the export of floodplain-derived organics and river-lake interaction led to a remarkable increase in terrestrial aromatic and humic-like DOM with high molecular weights and long turnover times in PY. Consequently, the labile fraction was extremely low (average LDOC% of 3%) during the rising-to-flood season (spring and summer). Conversely, autochthonous production in TH considerably enriched semi-labile (average SDOC% of 26%) and biodegradable DOM (average BDOC% of 34%) during the phytoplankton bloom to post-bloom season (summer and autumn). This was reflected by the accumulation of low-light-absorbing and protein-like components with high biological and fluorescence indices. In the dry and non-bloom season (winter), the better preservation of humic substances maintained the high molecular weight and humic degree of DOM in PY, while the decay of aquatic plants strengthened autochthonous production, resulting in a similar BDOC% of PY samples (23%-34%) to TH samples (18%-33%). We further applied partial least squares regression using DOM optical indices as predictive proxies, which generated a greater prediction strength for BDOC% (R2 = 0.80) compared to SDOC% (R2 = 0.57) and LDOC% (R2 = 0.28). The regression model identified aromaticity (SUVA254) as the most effective and negative predictor and low molecular weight (A250/A365) as the highly and positively influential factor. Our study provides new evidence that the seasonality of DOM lability profiles is regulated by the trade-off between flow-related variation and phytoplankton production, and presents an approach to describe and predict DOM lability across freshwater lakes.


Subject(s)
Dissolved Organic Matter , Lakes , Seasons , Rivers , China , Spectrometry, Fluorescence
12.
Mater Horiz ; 10(6): 2181-2190, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-36994553

ABSTRACT

As an emerging carbon-based material, carbon quantum dots (CQDs) have shown unstoppable prospects in the field of bionic electronics with their outstanding optoelectronic properties and unique biocompatible characteristics. In this study, a novel CQD-based memristor is proposed for neuromorphic computing. Unlike the models that rely on the formation and rupturing of conductive filaments, it is speculated that the resistance switching mechanism of CQD-based memristors is due to the conductive path caused by the hybridization state transition of the sp2 carbon domain and sp3 carbon domain induced by the reversible electric field. This avoids the drawback of uncontrollable nucleation sites leading to the random formation of conductive filaments in resistive switching. Importantly, it illustrates that the coefficient of variation (CV) of the threshold voltage can be as low as -1.551% and 0.083%, which confirms the remarkable uniform switching characteristics. Interestingly, the Pavlov's dog reflection as an important biological behavior can be demonstrated by the samples. Finally, the accuracy recognition rate of MNIST handwriting can reach up to 96.7%, which is very close to the ideal number (97.8%). A carbon-based memristor based on a new mechanism presented provides new possibilities for the improvement of brain-like computing.

13.
Wetlands (Wilmington) ; 43(1): 10, 2023.
Article in English | MEDLINE | ID: mdl-36683844

ABSTRACT

The increasing demand for water resources has triggered a series of water level regulation (WLR) projects, which exerts considerable effects on local hydrologic conditions. In particular, artificial impoundments, which may occur during the dry season in wetlands, increase the periods of waterlogging. However, little is known about their potential effects on biogeochemical cycling. To evaluate how impoundments affect nitrogen (N) cycling in the floodplain ecosystem, we conducted a mesocosm experiment to investigate N dynamics and the potential N-gene changes in the root-zone soil of the dominant plant in one large floodplain lake (Poyang Lake, China). The results indicated that, compared with the control, the 12 cm submergence treatment (SP12) caused NH4 +-N accumulation in the root-zone soil on day 14 and day 41. On the contrary, NO3 --N levels in SP12 were statistically lower than those in the control from day 7 to day 28. The curve of organic N had a tendency of declining as a whole. Changes in N-gene abundances revealed that SP12 significantly inhibited nitrification and enhanced denitrification in root-zone soil. Moreover, SP12 enhanced the links and complexity of the N-gene network, reflecting the increased correlations among the N transformations under flooding stress. Considering the increasing demand for WLR worldwide, the study about the effects of anti-seasonal submergence on biogeochemical cycling in floodplains provides insight into the ecological impacts of anthropogenic activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-022-01656-1.

14.
Environ Res ; 216(Pt 2): 114381, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36243051

ABSTRACT

Multi-species submerged plants grow with succession patterns in the same habit and play an important role in the aquatic ecosystems. The decomposition of submerged plants in aquatic environments was a disturbance that affected the water quality and microbial community structures. However, the responses of the microbial community function in surface water to the disturbance remain poorly understood. In this study, the effects of submerged macrophyte Potamogeton crispus L decomposition on the water quality and microbial carbon metabolism functions (MCMF) in the overlying water were investigated in the presence/absence of Vallisneria natans. The result showed that the decomposition rapidly released a large amount of organic matter and nutrients into the overlying water. The presence of Vallisneria natans promoted the removal of dissolved organic carbon and fluorescent component C3, resulting in lower values of the percentage content of C3 (C3%). Under various decomposition processes, the MCMF changed over time and significantly negatively correlated with C3%. The functional diversity of MCMF significantly correlated with the fluorescence organic matters, such as the richness and Simpson index correlated with the amount of C1, C1+C2+C3, and C3%. But UV-visible absorption indexes and nutrients in the overlying water had no relationship with the MCMF, except for the total nitrogen correlated with the richness. These results suggested that under various decomposition conditions, the fluorescent dissolved organic matter could be used as an indicator for quick prediction of MCMF in surface water.


Subject(s)
Hydrocharitaceae , Potamogetonaceae , Potamogetonaceae/metabolism , Dissolved Organic Matter , Ecosystem , Carbon/metabolism , Hydrocharitaceae/metabolism , Plants
15.
3 Biotech ; 12(11): 302, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276471

ABSTRACT

A three-dimensional graphene (3D GR) grown by chemical vapor deposition method was used as the anode of a miniaturized microbial fuel cell (mini-MFC), which was to be embedded in a 56-µL anode chamber for the formation of a thicker biofilm from Shewanella bacterial culture to promote high efficient extracellular electron transfer. Such 3D GR structure had fewer defects with few layers, and the framework showed significant high REDOX peak current density, high charge storage and low charge transfer resistance. Besides, the electron transport rate of 3D GR electrode was 0.0176 s-1, which was about two times faster than that of GR electrode with nickel foam substrate (GR/NF). Benefiting from the macroporous networks, high electron transfer rate and electrocatalytic activity, 3D GR anode facilitated efficient mass transfer and effective electron transport, further forming denser biofilm on the 3D GR. The maximum output voltage and power density of this mini-MFC were 820 mV and 23.8 mW/m2, which were much higher than those of the GR/NF anode at 590 mV and 12.8 mW/m2 and the bare NF anode at 450 mV and 4.6 mW/m2. The study demonstrated that 3D GR can be a promising anode material for improving MFC performance.

16.
Water Res ; 225: 119136, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36155006

ABSTRACT

Reactive oxygen species (ROS) are omnipresent in natural aquatic environments, and play an important role in biogeochemical cycles. One of the dominant sources of ROS in surface waters was thought to be from dissolved organic matter (DOM) interacting with photochemical process. The properties of DOM were different between the flood and drought periods in lakes; yet, information on how these variations influence ROS photoproduction is unknown. Through a three-year study, the photochemical properties of DOM and the resultant ROS photoproduction between the flood and drought period were determined in the largest freshwater lake in China (Lake Poyang). Results found that quantum yield coefficients of excited triplets (3CDOM*), apparent quantum yields of singlet oxygen (1O2) and hydroxyl radicals (•OH) were holistically higher in the flood period than those in the drought period. The optical properties of DOM showed that DOM in the flood period featured an allochthonous input, accompanied by higher molecular size (E2/E3), aromatic content (SUVA254), humification degree (HIX), while DOM in the drought period was mainly internal input. Fourier transform ion cyclotron resonance mass spectrometry (FI-ICR MS) further revealed that some refractory components, such as lignin-like and carboxyl-rich alicyclic molecules (CRAM) presented higher abundance in the flood period, and played the positive impacts on ROS production. Orthogonal partial least squares (OPLS) were used to build novel multivariate predictive models for indicating the spatio-temporal ROS production. Also, the relatively higher steady-state concentrations of 3CDOM* and 1O2 in the flood period could significantly diminish the half-lives of acetochlor. Considering the photochemical activity of DOM varied considerably at different periods, this study provided a new method to predict ROS production and contributed to a new insight into stage-specific emerging contaminants removing in natural aquatic environments.


Subject(s)
Lakes , Singlet Oxygen , Lakes/chemistry , Reactive Oxygen Species , Singlet Oxygen/chemistry , Floods , Organic Chemicals/chemistry , Droughts , Lignin
17.
J Colloid Interface Sci ; 627: 838-847, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35901563

ABSTRACT

Various challenges remain to be overcome in lithium-sulfur (Li-S) batteries, including the volume expansion and low conductivity of sulfur, the shuttle effect of lithium polysulfides and the sluggish redox reaction in the cell. Herein, we propose a multilayered conductive framework by the in situ growth of a conformal graphene-like C3N4 (GCN) coating on porous CNT@NC networks with carbon nanotubes (CNTs) as the core and N-doped carbon (NC) as the crosslinking shell. The abundant N in the GCN coating increased the surface N concentration of the framework from 14.38% to 18.77%, which enriched the active sites in the frameworks for the adsorption and catalysis conversion of LiPSs and Li2S with a low energy barrier. Furthermore, the scalable frameworks can provide an 85% porosity for a sufficient reaction interface and accommodate the volume expansion of sulfur. The synergistic effect between GCN and the highly conductive hierarchical structure can accelerate the transport of Li+ and electrons as well as the diffusion of electrolyte. Benefitting from the above advantages, the Al-free CNT@NC@GCN electrode exhibits a reversible capacity of 647.6 mAh g-1 after cycling for 450 cycles at 1C with a low capacity fading rate of 0.09% per cycle. This proposed facile strategy creates inspiring insights into the design of novel cathode materials for Li-S batteries.

18.
Article in English | MEDLINE | ID: mdl-35536189

ABSTRACT

Lithium-sulfur batteries stand out as the next-generation batteries because of their high energy density and low cost. However, the shuttle effect of lithium polysulfides (LiPSs), growth of lithium dendrites, and overuse of lithium resources still hinder their further application. To address these problems, we constructed a porous network structure in which Sn is melted and coated on a frame that has a carbon nanotube (CNT) core and a nitrogen-doped carbon (NC) coating as cross-linking shell (CNT@NC@Sn). This hierarchically porous membrane electrode, which has an ultrahigh porosity of approximately 90%, works as a matrix to strengthen the conductivity of Li+ and electrons and provides enough space for the conversion between sulfur and LiPSs. Moreover, the in situ thin coating of Sn not only promotes the adsorption and catalytic conversion of LiPSs but also provides lithiophilic binding sites and induces uniform lithium deposition. Thus, the thiophilic-lithiophilic porous membrane electrode with lithium loaded on the frame (in the form of Sn-Li alloy) by electroplating can replace lithium sheets, reduce the use of Li, and improve the safety performance of the battery. Additionally, these dual-functional membranes boost the reaction kinetics and conductivity of the cathode by dispersing the sulfur slurry in the porous membrane framework. As a result, the lithium-sulfur full battery assembled with the CNT@NC@Sn integrated membrane electrode exhibits stable cycling with a reversible capacity of 617.1 mAh g-1 after 200 cycles at 1 C. The capacity decay rate per cycle is 0.105%, and the N/P ratio is as low as 2.98.

19.
Chemosphere ; 301: 134705, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35487357

ABSTRACT

Lake restoration (typically sediment dredging) commonly involves producing a new sediment-water interface (SWI). This study comprehensively investigated the migration and transformation of P during the formation of a new SWI under different dissolved oxygen (DO) levels in the overlying water, based on Fe/Al-rich sediment. The results suggest that DO had a profound effect on the 0-7 cm sediment layer properties and higher DO levels in the overlying water resulted in the diffusion of DO deeper into the sediments. Importantly, besides preventing Fe reductive dissolution and sulfides competition, higher DO levels inhibited the release of P from sediment by inducing the mitigation of P from the upper (0-3 cm) into the bottom (3-7 cm) sediments. The migration of P was found to be closely related to the interactions between organic matter and Al, Fe, and Ca in the sediment profile caused by higher DO levels in overlying water. Particularly, the decrease in organic matter in the upper sediments increased the mobility of Ca and promoted aging of Al and Fe, which increased the migration of the different forms of P. The increased organic matter in the bottom sediments retained the mobile Ca and increased amorphous Fe, which immobilized the P that had migrated from the upper sediments. These results demonstrate the relatively high mobility of P in the upper sediments and the importance of P immobilization capability of bottom sediments on regulating P release from SWI under higher DO levels in overlying water. Accordingly, measures for lake restoration with producing a new SWI were recommended to be applied in combination with P immobilization method to develop more feasible strategies.


Subject(s)
Lakes , Water Pollutants, Chemical , Environmental Monitoring/methods , Geologic Sediments , Oxygen , Phosphorus/analysis , Water , Water Pollutants, Chemical/analysis
20.
Sci Total Environ ; 827: 154224, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35240172

ABSTRACT

While fluid sediments normally formed through hydrodynamic erosion and transport was well known, the fluid sediments caused by organic matter accumulation and degradation in eutrophic lakes was rarely investigated. Here, the effects of cyanobacterial bloom biomass (CBB) accumulation and water depth on the occurrence of fluid sediments were studied. Within 30 days of experiments, the variation of sediment height firstly increased to the maximum with rising in water depth, then decreased due to the high hydraulic pressure. While the surface sediments density decreased slightly from 1.35 g cm-3 to around 1.32 g cm-3 without CBB accumulation, and CBB accumulation led to lower density (around 1.02 g cm-3) but higher shear stress of sediments. Through analyzing the extracellular polymeric substances (EPS), it was found that CBB accumulation improved the polysaccharide/protein ratios of sediment. The infrared analysis further indicated that the bound-EPS could protect fluid sediments bio-stabilization. Meanwhile, the enriched Acinetobacter, Pseudomonas in sediments with CBB accumulation might play roles in EPS production, which benefited the bio-stabilization of fluid sediments. Furthermore, the stability of fluid sediments increased with increase in water depth, and the resuspension of biological fluid sediments would occur more likely in the low water depth area. Altogether, this study reported the formation and stability of the biological fluid sediments in eutrophic shallow lakes, and could help provide clues against sediment resuspension in lake ecosystems.


Subject(s)
Cyanobacteria , Eutrophication , Biomass , China , Ecosystem , Geologic Sediments/microbiology , Lakes/microbiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...