Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Tissue Eng Regen Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943036

ABSTRACT

BACKGROUND: Classical guided bone regeneration (GBR) treatments can achieve favorable clinical results for ridge defects. However, extensive bone augmentation in the non-esthetic area in the posterior region for minor ridge defects is unnecessary. Therefore, this study used a collagen and Platelet-rich fibrin (PRF) mixture for bone augmentation on minor posterior ridge defects and evaluated the effects. METHODS: 22 Seibert Class I ridge defects were treated with BC and covered with a PRF membrane (simplified guided bone regeneration, simplified GBR) and other 22 were treated with Bio-Oss and covered with Bio-Gide (classical GBR). Cone-beam computed tomography imaging was conducted 6 months post-surgery to compare the ridge's horizontal width (HW) and buccal ridge's horizontal width to assess the osteogenic effect. In addition, the buccal ridge contour morphology was studied and classified. RESULTS: The buccal ridge contour of simplified GBR was Type A in 14 cases, Type B in 7 cases, and Type C in 1 case and it of classical GBR was Type A in 11 cases, Type B in 8 cases, and Type C in 3 cases. The mean HW significantly increased by 1.50 mm of simplified GBR treatment, while it increased by 1.83 mm in classical GBR treatment. CONCLUSION: The combined use of BC and PRF had a significant effect on bone augmentation and this treatment exhibited promising clinical results for correcting posterior Seibert Class I ridge defects. The morphological classification of the reconstructive effect in this study can be utilized in future clinical work.

2.
Heliyon ; 10(4): e24348, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434039

ABSTRACT

Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.

3.
Front Bioeng Biotechnol ; 11: 1269223, 2023.
Article in English | MEDLINE | ID: mdl-38033819

ABSTRACT

Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.

4.
Polymers (Basel) ; 15(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242980

ABSTRACT

As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.

5.
Biomed Mater ; 18(3)2023 04 19.
Article in English | MEDLINE | ID: mdl-37001532

ABSTRACT

Guided bone/tissue regeneration (GBR/GTR) is commonly used in dental treatment. The desired bone/tissue regeneration is achieved by placing a barrier membrane over the defect to avoid the downward growth of faster-growing connective and epithelial tissue into the defect. This review aimed to evaluate osteogenic properties, degradation characteristics, and postoperative complications of eight biodegradable membranes in animal experiments, including non-crosslinked collagen membrane (NCCM), crosslinked collagen membrane (CCM), silk membrane (SM), polylactic-co-glycolic acid, polylactic acid, polyethylene glycol hydrogel, polycaprolactone (PCL), and magnesium alloys. Seven electronic databases (PubMed, Embase, Web of Science, Cochrane Library, Science Direct, Wiley, Scopus and Google Scholar) were screened. Study selection, data extraction and quality assessment were made in duplicate. The SYRCLE assessment tool, CERQual (Confidence in the Evidence from Reviews of Qualitative Research) tool and GRADE tool were used to grade the risk of bias and level of evidence. A total of 2512 articles were found in the electronic database. Finally, 94 articles were selected, of which 53 were meta-analyzed. Surface under the cumulative ranking curve showed the best results for new bone formation in the magnesium barrier membrane group, followed by SM, PCL, NCCM, and CCM. Qualitative analysis showed good biocompatibility for natural polymer membranes and a longer degradation time for synthetic polymer membranes. In addition, 34 studies all showed high bias risks, while other studies had unclear bias risks. Natural polymer membranes were more effective for bone regeneration and magnesium alloys were proved to be promising barrier materials that warrant future research.


Subject(s)
Guided Tissue Regeneration , Magnesium , Animals , Bone Regeneration , Collagen , Membranes, Artificial , Network Meta-Analysis , Polymers
6.
Int J Clin Pract ; 2022: 1850012, 2022.
Article in English | MEDLINE | ID: mdl-36249910

ABSTRACT

Maxillary sinus augmentation is critical to oral implantology, particularly in some cases. The morphology of the sinus floor reflects the lifting effect to a certain extent; however, there has been limited research on the morphology after sinus augmentation. The present study aims to investigate the relationship between residual bone height (RBH) and the morphology of the sinus floor and determine whether a correlation exists between the different evaluation classifications. Maxillary sinus floor augmentation procedures were performed in 56 patients and 68 teeth using the sinus crest approach (SCA). Imaging results obtained after one year of sinus augmentation were analyzed and simultaneously classified along the coronal plane, the sagittal plane, and the biplane (coronal-sagittal). The higher the RBH, the closer the result tends to be to A, A', or type 1 (more satisfactory). There was a significant correlation between the three different evaluation classifications (p < 0.05). The morphology of perforation cases was involved in types C, D, C', and D'. A more satisfactory post-lifting morphology (tent type and flat type) is probably related to an optimal preoperative bone height, and an unsatisfactory post-lifting morphology is related to a low preoperative sinus floor height. The sagittal plane evaluation correlates with the coronal plane and biplane evaluation and is thus more recommended.


Subject(s)
Maxillary Sinus , Sinus Floor Augmentation , Disease Progression , Humans , Maxilla , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/surgery , Retrospective Studies , Sinus Floor Augmentation/methods
7.
J Oncol ; 2022: 7802334, 2022.
Article in English | MEDLINE | ID: mdl-36065305

ABSTRACT

In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.

8.
J Esthet Restor Dent ; 34(8): 1179-1196, 2022 12.
Article in English | MEDLINE | ID: mdl-35968802

ABSTRACT

OBJECTIVE: To review four types of three-dimensional imaging devices: intraoral scanners, extraoral scanners, cone-beam computed tomography (CBCT), and facial scanners, in terms of their development, technologies, advantages, disadvantages, accuracy, influencing factors, and applications in dentistry. METHODS: PubMed (National Library of Medicine) and Google Scholar databases were searched. Additionally, the scanner manufacturers' websites were accessed to obtain relevant data. Four authors independently selected the articles, books, and websites. To exclude duplicates and scrutinize the data, they were uploaded to Mendeley Data. In total, 135 articles, two books, and 17 websites were included. RESULTS: Research and clinical practice have shown that oral and facial scanners and CBCT can be used widely in various areas of dentistry with high accuracy. CONCLUSION: Although further advancement of these devices is desirable, there is no doubt that digital technology represents the future of dentistry. Furthermore, the combined use of different devices may bring dentistry into a new era. These four devices will play a significant role in clinical utility with high accuracy. The combined use of these devices should be explored further. CLINICAL SIGNIFICANCE: The four devices will play a significant role in clinical use with high accuracy. The combined use of these devices should be explored further.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Face , Dentistry
9.
Biomed Res Int ; 2022: 7742687, 2022.
Article in English | MEDLINE | ID: mdl-35872861

ABSTRACT

This study is aimed at performing a systematic review and a network meta-analysis of the effects of several membranes on vertical bone regeneration and clinical complications in guided bone regeneration (GBR) or guided tissue regeneration (GTR). We compared the effects of the following membranes: high-density polytetrafluoroethylene (d-PTFE), expanded polytetrafluoroethylene (e-PTFE), crosslinked collagen membrane (CCM), noncrosslinked collagen membrane (CM), titanium mesh (TM), titanium mesh plus noncrosslinked (TM + CM), titanium mesh plus crosslinked (TM + CCM), titanium-reinforced d-PTFE, titanium-reinforced e-PTFE, polylactic acid (PLA), polyethylene glycol (PEG), and polylactic acid 910 (PLA910). Using the PICOS principles to help determine inclusion criteria, articles are collected using PubMed, Web of Science, and other databases. Assess the risk of deviation and the quality of evidence using the Cochrane Evaluation Manual, and GRADE. 27 articles were finally included. 19 articles were included in a network meta-analysis with vertical bone increment as an outcome measure. The network meta-analysis includes network diagrams, paired-comparison forest diagrams, funnel diagrams, surface under the cumulative ranking curve (SUCRA) diagrams, and sensitivity analysis diagrams. SUCRA indicated that titanium-reinforced d-PTFE exhibited the highest vertical bone increment effect. Meanwhile, we analyzed the complications of 19 studies and found that soft tissue injury and membrane exposure were the most common complications.


Subject(s)
Guided Tissue Regeneration, Periodontal , Titanium , Bone Regeneration , Collagen , Membranes, Artificial , Network Meta-Analysis , Polytetrafluoroethylene
10.
Biomed Res Int ; 2022: 8451445, 2022.
Article in English | MEDLINE | ID: mdl-35898679

ABSTRACT

With the development of ceramic technology, prosthodontic ceramics are becoming a useful option for improving esthetic outcomes in dentistry. In this paper, various ceramic materials were reviewed and evaluated, and their advantages and disadvantages and indications in oral prosthodontics were analyzed objectively. The properties of resin-based ceramics, polycrystalline ceramics, and silicate ceramics were compared and analyzed. Resin-based ceramics may replace other ceramic materials in the CAD/CAM field.


Subject(s)
Ceramics , Computer-Aided Design , Ceramics/chemistry , Ceramics/therapeutic use , Dental Materials/therapeutic use , Dental Porcelain/therapeutic use , Dentistry , Materials Testing , Surface Properties
11.
Bioinorg Chem Appl ; 2022: 8289447, 2022.
Article in English | MEDLINE | ID: mdl-35800067

ABSTRACT

At the moment, unserviceable magnesium implants make a good case in point for further responsible study in this field. Whether we are willing to admit it or not, existing methods for corrosion monitoring are exposed to susceptibility and instability. Interdisciplinary theories and the existing corrosion experiments were combined based on their various merits for developing an accurate and precise corroding experiment for Mg/Mg alloys. We used the water-soluble tetrazolium-8 (WST-8) reagent to further complete the immersion experiment. The color change of the solution reflects the rationale of corrosion, followed by monitoring the degree of corrosion. The feasibility of this idea will be demonstrated.

12.
Gels ; 8(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35735704

ABSTRACT

Poloxamer is a triblock copolymer with amphiphilicity and reversible thermal responsiveness and has wide application prospects in biomedical applications owing to its multifunctional properties. Poloxamer hydrogels play a crucial role in the field of tissue engineering and have been regarded as injectable scaffolds for loading cells or growth factors (GFs) in the last few years. Hydrogel micelles can maintain the integrity and stability of cells and GFs and form an appropriate vascular network at the application site, thus creating an appropriate microenvironment for cell growth, nerve growth, or bone integration. The injectability and low toxicity of poloxamer hydrogels make them a noninvasive method. In addition, they can also be good candidates for bio-inks, the raw material for three-dimensional (3D) printing. However, the potential of poloxamer hydrogels has not been fully explored owing to the complex biological challenges. In this review, the latest progress and cutting-edge research of poloxamer-based scaffolds in different fields of application such as the bone, vascular, cartilage, skin, nervous system, and organs in tissue engineering and 3D printing are reviewed, and the important roles of poloxamers in tissue engineering scaffolds are discussed in depth.

13.
Tissue Eng Regen Med ; 19(3): 437-450, 2022 06.
Article in English | MEDLINE | ID: mdl-35532735

ABSTRACT

Bone graft materials have mixed effects of bone repair in the field of oral maxillofacial surgery. The qualitative analyses performed by previous studies imply that autogenous odontogenic materials and autogenous bone have similar effects on bone repair in clinical jaw bone transplantation. This retrospective systematic assessment and network meta-analysis aimed to analyze the best effect of clinical application of autogenous odontogenic materials and autogenous, allogeneic, and xenogeneic bone grafts in bone defect repair. A systematic review was performed by searching the PubMed, Cochrane Library, and other journal databases using selected keywords and Medical Subject Headings search terms. 10 Papers (n = 466) that met the inclusion criteria were selected. The assessment of heterogeneity did not reveal any overall statistical difference or heterogeneity (P = 0.051 > 0.05), whereas the comparison between autogenous and allogeneic bone grafts revealed local heterogeneity (P = 0.071 < 0.1). Risk of bias revealed nine unclear studies and one high-risk study. The overall consistency was good (P = 0.065 > 0.05), and the local inconsistency test did not reveal any inconsistency. The publication bias was good. The confidence regarding the ranking of bone graft materials after GRADE classification was moderate. The effects on bone repair in the descending order were as follows: autogenous odontogenic materials, xenogeneic bone, autogenous bone, and allogeneic bone. This result indicates that the autogenous odontogenic materials displayed stronger effects on bone repair compared to other bone graft materials. Autogenous odontogenic materials have broad development prospects in oral maxillofacial surgery.


Subject(s)
Bone Transplantation , Facial Bones , Animals , Facial Bones/transplantation , Humans , Network Meta-Analysis , Retrospective Studies , Transplantation, Heterologous
14.
Bioinorg Chem Appl ; 2022: 4529520, 2022.
Article in English | MEDLINE | ID: mdl-35399618

ABSTRACT

Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.

15.
Int J Dent ; 2022: 8332631, 2022.
Article in English | MEDLINE | ID: mdl-35251183

ABSTRACT

OBJECTIVE: This review aims to summarize different kinds of applications of minimally invasive surgery in improving facial aging to provide a comprehensive and accurate introduction on the issue of esthetic treatment of facial skin. Overview. In the twentieth century, facial rejuvenation has become a new beauty trend. Facial cosmetology has entered a period of antiaging and rejuvenation therapies and microplastic surgery. The pursuit of beauty has promoted the development of minimally invasive plastic surgery. This review introduces the possible causes of facial aging and its related topics with a focus on facial injectable drugs, such as botulinum toxin, main filler materials (hyaluronic acid, calcium hydroxyapatite, poly L-lactic acid, collagen, autologous fat, and polymethyl methacrylate), and some current antiwrinkle technologies, such as thread lift and radiofrequency rhytidectomy. CONCLUSIONS: Despite the difference in mechanisms of action, each technique can address facial aging involving the loss of collagen, displacement and enlargement of fat, and muscle relaxation. Combinations of these treatments can provide patients with reasonable, comprehensive, and personalized treatment plans.

16.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267700

ABSTRACT

Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.

17.
Bioinorg Chem Appl ; 2022: 7636482, 2022.
Article in English | MEDLINE | ID: mdl-35295762

ABSTRACT

After several years of research and development, it has been reported that magnesium alloys can be used as degradable metals in some medical device applications. Over the years, fluoride coatings have received increasing research attention for improving the corrosion resistance of magnesium. In this paper, different methods for preparing fluoride coatings and the characteristics of these coatings are reported for the first time. The influence of the preparation conditions of fluoride coatings, including the magnesium substrate, voltage, and electrolyte, on the coatings is discussed. Various properties of magnesium fluoride coatings are also summarized, with an emphasis on corrosion resistance, mechanical properties, and biocompatibility. We screened experiments and papers that planned the application of magnesium fluoride coatings in living organisms. We have selected the literature with the aim of enhancing the performance of in vivo implants for reading and further detailed classification. The authors searched PubMed, SCOPUS, Web of Science, and other databases for 688 relevant papers published between 2005 and 2021, citing 105 of them. The selected time range is the last 16 years. Furthermore, this paper systematically discusses future prospects and challenges related to the application of magnesium fluoride coatings to medical products.

18.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159828

ABSTRACT

Graphene can be used as a drug carrier of doxorubicin (DOX) to reduce the side effects of doxorubicin. However, there is limited research on the surface chemical modifications and biological effects of graphene oxide (GO). Therefore, it is necessary to explore the DOX affinity of different oxygen-containing functional groups in the graphene system. We constructed graphene system models and studied the structure and distribution of epoxy and hydroxyl groups on the carbon surface. Based on molecular dynamics simulations and density functional theory (DFT), we investigated the interaction between DOX and either pristine graphene or GO with different ratios of oxygen-containing groups. The hydroxyl groups exhibited a stronger affinity for DOX than the epoxy groups. Therefore, the DOX loading capacity of graphene systems can be adjusted by increasing the ratio of hydroxyl to epoxy groups on the carbon surface.

19.
Kaohsiung J Med Sci ; 38(1): 18-29, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34595819

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory disease that can be caused by the proliferation and migration of human vascular smooth muscle cells (HVSMCs). Here, we found that lncRNA XIST was related to the abnormal proliferation and migration of HVSMCs, and thus, the mechanism by which XIST regulated HVSMCs was further investigated. HVSMCs were treated with oxidized low-density lipoprotein (ox-LDL, 100 µg/ml) as AS models. CCK8 assays, flow cytometry, Transwell assays and wound healing assays were applied to evaluate cell viability, cell cycle analysis, and cell migration, respectively. A dual-luciferase reporter assay was employed to verify the binding relationships between XIST and miR-761, miR-761, and BMP9. Ox-LDL induced the proliferation and migration of HVSMCs, upregulated the expression of XIST, downregulated miR-761 expression, and activated the BMP9/ALK1/endoglin pathway. Luciferase assays revealed that XIST sponged miR-761. XIST knockdown ameliorated ox-LDL-mediated effects in HVSMCs, which were largely abolished by miR-761 silencing. BMP9 was targeted-inhibited by miR-761. MiR-761 overexpression alleviated ox-LDL-mediated effects in HVSMCs. However, BMP9 overexpression abolished miR-761-mediated effects in HVSMCs treated with ox-LDL. Our findings suggested that XIST knockdown suppressed the proliferation and migration of HVSMCs by promoting miR-761, which targeted-inhibited the BMP9/ALK1/endoglin pathway.


Subject(s)
Atherosclerosis/metabolism , Lipoproteins, LDL , MicroRNAs/metabolism , Myocytes, Smooth Muscle , RNA, Long Noncoding/metabolism , Atherosclerosis/genetics , Cell Movement , Cell Proliferation , Cell Survival , Down-Regulation , Growth Differentiation Factor 2 , Humans , MicroRNAs/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , RNA, Long Noncoding/genetics , Signal Transduction
20.
Pain Res Manag ; 2021: 3788660, 2021.
Article in English | MEDLINE | ID: mdl-34956432

ABSTRACT

Cracked tooth syndrome refers to a series of symptoms caused by cracked teeth. This article reviews the current literature on cracked tooth syndrome from four aspects, etiology, diagnosis, management, and prevention, to provide readers integrated information about this. The article begins with an introduction to the odontiatrogenic factors and then covers the noniatrogenic factors that induce cracked tooth syndrome. While the former discusses inappropriate root canal therapy and improper restorative procedures, the latter covers the topics such as the developmental and functional status of cracked tooth syndrome. This is then followed by the description of common clinical diagnosis methods, the prospects of new technologies, and summaries of current clinical management methods, including immediate management and direct and indirect restoration. In the final section, preventive methods and their importance are proposed, with the aim of educating the common population.


Subject(s)
Cracked Tooth Syndrome , Cracked Tooth Syndrome/diagnosis , Cracked Tooth Syndrome/etiology , Cracked Tooth Syndrome/therapy , Dental Care , Humans , Root Canal Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...