Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Org Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959370

ABSTRACT

Palladium-catalyzed reaction of indolines with 1-acyl-2,3-dihydro-1H-pyrroles or 1-acyl-2,5-dihydro-1H-pyrroles in air produces N-alkylated indoles. A combination of Pd(CH3CN)2Cl2 and dppf effectively catalyzes the reaction of 1-acyl-2,3-dihydro-1H-pyrroles, and the combination of Pd(CH3CN)2Cl2 and dcypf is more effective for the reaction of 1-acyl-2,5-dihydro-1H-pyrroles. The method has a wide scope of substrates and shows good compatibility of functional groups.

2.
Antibiotics (Basel) ; 13(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786174

ABSTRACT

The P1 phage has garnered attention as a carrier of antibiotic resistance genes (ARGs) in Enterobacteriaceae. However, the transferability of ARGs by P1-like phages carrying ARGs, in addition to the mechanism underlying ARG acquisition, remain largely unknown. In this study, we elucidated the biological characteristics, the induction and transmission abilities, and the acquisition mechanism of the blaCTX-M-27 gene in the P1 phage. The P1-CTX phage exhibited distinct lytic plaques and possessed a complete head and tail structure. Additionally, the P1-CTX phage was induced successfully under various conditions, including UV exposure, heat treatment at 42 °C, and subinhibitory concentrations (sub-MICs) of antibiotics. Moreover, the P1-CTX phage could mobilize the blaCTX-M-27 gene into three strains of Escherichia coli (E. coli) and the following seven different serotypes of Salmonella: Rissen, Derby, Kentucky, Typhimurium, Cerro, Senftenberg, and Muenster. The mechanism underlying ARG acquisition by the P1-CTX phage involved Tn1721 transposition-mediated movement of blaCTX-M-27 into the ref and mat genes within its genome. To our knowledge, this is the first report documenting the dynamic processes of ARG acquisition by a phage. Furthermore, this study enriches the research on the mechanism underlying the phage acquisition of drug resistance genes and provides a basis for determining the risk of drug resistance during phage transmission.

3.
Int J Food Microbiol ; 412: 110572, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38237416

ABSTRACT

The monophasic variant of Salmonella enterica serovar Typhimurium with the antigenic formula 1,4,[5],12:i:- is one of the most common pathogenic bacteria causing global food-borne outbreaks. However, the research on molecular characteristics and evolution of monophasic S. typhimurium in China is still lacking. In the current study, 59 monophasic S. typhimurium strains were isolated from food animals and food products in South China between 2011 and 2018. A total of 87.5 % of monophasic S. typhimurium isolates were grouped into one independent clade with other monophasic S. typhimurium strains in China distinct from other countries by phylogenomic analysis. These isolates possess variable genotypes, including multiple ARGs on plasmid IncHI2, diverse evolutions at the fljAB locus, and virulence factors. Our results suggest that the monophasic S. typhimurium isolates currently circulating in China might be an independent epidemic subtype.


Subject(s)
Salmonella Infections , Animals , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Serogroup , Plasmids , Genotype , Anti-Bacterial Agents
4.
J Pharm Biomed Anal ; 234: 115573, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37459834

ABSTRACT

Tripterygium wilfordii (TW), a well-known traditional Chinese medicine, was widely used in the treatment of autoimmune disorders and inflammatory diseases. However, the clinical use of TW was limited by severe toxicities, such as hepatotoxicity and nephrotoxicity. Our previous studies indicated that roasting was an effective approach for reducing TW-induced toxicity. After roasting, celastrol was completely decomposed, partially converted into 1-hydroxy-2,5,8-trimethyl-9-fluorenone and the total alkaloids content were significantly reduced. However, the detoxication mechanisms of roasting on TW were poorly unknown. This study aimed to explore the toxicity and detoxification mechanisms of TW after roasting based on urine metabolomics. Promising biomarkers were evaluated by multiple comparison analyses. Sixteen toxicity biomarkers were identified between control group and total extract group. Twelve toxicity biomarkers were identified between control group and total alkaloids group. Eight toxicity biomarkers were identified between control group and celastrol group. These metabolites were mainly involved in seven metabolic pathways, summarized as pentose and glucuronate interconversions, lipid metabolism (sphingolipid metabolism, glycerophospholipid metabolisms, fatty acid biosynthesis and steroid hormone biosynthesis) and amino acid metabolism (taurine and hypotaurine metabolism, tryptophan metabolism). After roasting, the toxicities of total extract, total alkaloids and celastrol were relieved by ameliorative serum parameters and pathological changes in hepatic and renal tissues which revealed that the reduction of celastrol and total alkaloids played important roles in the detoxification of roasting on TW. Furthermore, roasting regulated the levels of fourteen potential biomarkers in the total extract group, ten potential biomarkers in the total alkaloids group and seven candidate biomarkers in the celastrol group to normal levels. Biological pathway analysis revealed that roasting may ameliorate TW-induced metabolic disorders in pentose and glucuronate interconversions, lipid metabolism and amino acid metabolism. This study provided evidence for the application of roasting in TW.


Subject(s)
Alkaloids , Drug-Related Side Effects and Adverse Reactions , Humans , Tandem Mass Spectrometry , Tripterygium/chemistry , Metabolomics , Biomarkers , Alkaloids/toxicity , Amino Acids/metabolism
5.
Front Microbiol ; 14: 1153139, 2023.
Article in English | MEDLINE | ID: mdl-37303808

ABSTRACT

Introduction: This study aimed to investigate the genetic factors promoting widespread Q6 dissemination of tet(X4) between Escherichia coli and to characterize the genetic contexts of tet(X4). Methods: We isolated E. coli from feces, water, soil and flies collected across a large-scale chicken farm in China in 2020. Antimicrobial susceptibility testing and PFGE typing were used to identify tigecycline resistance and assess clonal relationships among isolates. Plasmids present and genome sequences were analyzed by conjugation, S1 pulsed-field gel electrophoresis (PFGE), plasmid stability testing and whole-genome sequencing. Results: A total of 204 tigecycline-resistant E. coli were isolated from 662 samples. Of these, we identified 165 tet(X4)-carrying E. coli and these strains exhibited a high degree of multidrug resistance. Based on the geographical location distribution of the sampled areas, number of samples in each area and isolation rate of tigecycline-resistant strains and tet(X4)-carrying isolates, 72 tet(X4)-positive isolates were selected for further investigation. Tigecycline resistance was shown to be mobile in 72 isolates and three types of tet(X4)-carrying plasmids were identified, they were IncHI1 (n = 67), IncX1 (n = 3) and pO111-like/IncFIA(HI1) (n = 2). The pO111-like/IncFIA(HI1) is a novel plasmid capable of transferring tet(X4). The transfer efficiency of IncHI1 plasmids was extremely high in most cases and IncHI1 plasmids were stable when transferred into common recipient strains. The genetic structures flanked by IS1, IS26 and ISCR2 containing tet(X4) were complex and varied in different plasmids. Discussion: The widespread dissemination of tigecycline-resistant E. coli is a major threat to public health. This data suggests careful use of tetracycline on farms is important to limit spread of resistance to tigecycline. Multiple mobile elements carrying tet(X4) are in circulation with IncHI1 plasmids the dominant vector in this setting.

6.
Antibiotics (Basel) ; 12(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37370280

ABSTRACT

We determined the prevalence and molecular characteristics of blaCTX-M-55-positive Escherichia coli (E. coli) isolated from duck-fish polyculture farms in Guangzhou, China. A total of 914 E. coli strains were isolated from 2008 duck and environmental samples (water, soil and plants) collected from four duck fish polyculture farms between 2017 and 2019. Among them, 196 strains were CTX-M-1G-positive strains by PCR, and 177 (90%) blaCTX-M-1G-producing strains were blaCTX-M-55-positive. MIC results showed that the 177 blaCTX-M-55-positive strains were highly resistant to ciprofloxacin, ceftiofur and florfenicol, with antibiotic resistance rates above 95%. Among the 177 strains, 37 strains carrying the F18:A-:B1 plasmid and 10 strains carrying the F33:A-:B- plasmid were selected for further study. Pulse field gel electrophoresis (PFGE) combined with S1-PFGE, Southern hybridization and whole-genome sequencing (WGS) analysis showed that both horizontal transfer and clonal spread contributed to dissemination of the blaCTX-M-55 gene among the E. coli. blaCTX-M-55 was located on different F18:A-:B1 plasmids with sizes between ~76 and ~173 kb. In addition, the presence of blaCTX-M-55 with other resistance genes (e.g., tetA, floR, fosA3, blaTEM, aadA5 CmlA and InuF) on the same F18:A-:B1 plasmid may result in co-selection of resistance determinants and accelerate the dissemination of blaCTX-M-55 in E. coli. In summary, the F18:A-:B1 plasmid may play an important role in the transmission of blaCTX-M-55 in E. coli, and the continuous monitoring of the prevalence and transmission mechanism of blaCTX-M-55 in duck-fish polyculture farms remains important.

7.
Microbiol Spectr ; 11(4): e0108923, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358409

ABSTRACT

In recent years, blaCTX-M-55-positive Escherichia coli has been widely reported in multiple locations with an increasing trend in prevalence, yet few studies have comprehensively analyzed the transmission characteristics and epidemiological patterns of blaCTX-M-55-positive E. coli. Here, we constructed a blaCTX-M-55-positive E. coli global genomic data set as completely as possible and explored the epidemiology and potential impact of blaCTX-M-55-positive E. coli on a global scale by high-resolution bioinformatics methods. The results show that blaCTX-M-55-positive E. coli has spread widely worldwide, especially in Asia, with the rich sequence typing (ST) diversity and high proportion of auxiliary genome occupancy indicating a high degree of openness. The phylogenetic tree suggests that blaCTX-M-55-positive E. coli is frequently clonally transmitted between the three human-animal environments and often cotransmitted with fosA, mcr, blaNDM, and tet(X). The stable presence of InclI1 and InclI2 in different hosts from different sources suggests that this part of the plasmid drives the widespread transmission of blaCTX-M-55-positive E. coli. We inductively clustered all blaCTX-M-55 flanking environmental gene structures and obtained five types. Notably, "ISEcp1-blaCTX-M-55-orf477-(Tn2)" and "IS26(IS15DI)-hp-hp-blaCTX-M-55-orf477-hp-blaTEM-IS26-hp-IS26-Tn2" are dominant in "humans" and in "animals and related foods," respectively. Overall, our findings highlight the importance of whole-genome sequencing-based surveillance in exploring the transmission and evolution of blaCTX-M-55-positive E. coli in the context of "One Health," and they serve as a reminder to strengthen the surveillance of blaCTX-M-55-positive E. coli in order to address the potential risk of future large outbreaks. IMPORTANCE CTX-M-55 was first discovered in Thailand in 2004, and today, this enzyme is the most common CTX-M subtype in E. coli of animal origin in China. Thus, blaCTX-M-55-positive E. coli getting widely spread is a growing public health problem. Although prevalence surveys of blaCTX-M-55-positive E. coli in different hosts have been widely reported in recent years, they remain insufficient in "One Health" context and from a global comprehensive perspective. Here, we constructed a genomic database of 2144 blaCTX-M-55-positive E. coli and used bioinformatics methods to resolve the spread and evolution of blaCTX-M-55-positive E. coli. The results suggest a potential risk of rapid transmission of blaCTX-M-55-positive E. coli and that long-term continuous surveillance of blaCTX-M-55-positive E. coli should be emphasized.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Humans , Phylogeny , beta-Lactamases/genetics , Plasmids/genetics , Escherichia coli Infections/epidemiology , Genomics , Thailand , Anti-Bacterial Agents
8.
Sci Total Environ ; 882: 163511, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37080303

ABSTRACT

Integrated and monoculture freshwater aquaculture systems are often regarded as important reservoirs for antimicrobial resistance genes (ARGs) and antimicrobial resistance bacteria (ARBs), yet only a few studies have assessed differences in the antimicrobial resistome and antibiotic residues between aquaculture modes. In this study, a metagenomic approach was used to comprehensively explore the dynamic patterns and potential transmission mechanisms of ARGs in ducks, human workers, fish, water and sediments during the transition from an integrated to a monoculture freshwater aquaculture mode and to investigate the associations of ARGs with potential hosts in microbial communities using network analysis and a binning approach. The results showed that the abundance and diversity of ARGs were higher under integrated fish-duck farming than in single fish ponds. During the transition from an integrated to a monoculture aquaculture farm, ARGs in workers and sediments were not easily removed. However, ARGs in the aquatic environment underwent regular changes. In addition, duck manure was probably the most dominant source of ARGs in the duck farm environment. Network analysis indicated that Escherichia spp. were the most dominant hosts of ARGs. Variation partitioning analysis (VPA) showed that in water samples, the bacterial community played an important role in the ARG profile. In addition, we identified a potential risk of the presence of highly virulent and antimicrobial-resistant Klebsiella pneumoniae in workers. These results help assess the risk of ARG transmission in integrated and monoculture aquaculture farms and suggest that we should strengthen the monitoring of long-term resistance in integrated aquaculture environments.


Subject(s)
Angiotensin Receptor Antagonists , Genes, Bacterial , Animals , Humans , Angiotensin Receptor Antagonists/analysis , Drug Resistance, Microbial/genetics , Angiotensin-Converting Enzyme Inhibitors/analysis , Bacteria/genetics , Aquaculture/methods , Anti-Bacterial Agents/analysis , Water/analysis , China
9.
Vet Microbiol ; 271: 109493, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35728389

ABSTRACT

The use of antimicrobials in food animals is the major determinant for the propagation of resistant bacteria in the animal reservoir. The objective of this study was to investigate the presence and distribution of third-generation cephalosporin (3GC) -resistant and plasmid-mediated AmpC (pAmpC)-producing Escherichia coli isolated from food animals in Southern China. In total, 744 3GC-resistant and 40 blaCMY-2-positive E. coli strains were recovered from 1656 food animal fecal samples across five rearing regions. The blaCMY-2 genes were located on IncC, IncFIB or IncI1 type plasmids in 12 E. coli isolates. In the other 22 isolates, S1-PFGE and hybridization analyses revealed that the blaCMY-2 gene was chromosomally located and demonstrated a high prevalence of the chromosomally encoded blaCMY-2 gene in E. coli. Plasmid stability and growth curve experiments demonstrated that IncI1, IncC and IncFIB plasmids can exist stably in the host bacteria and with a low growth burden and may be the reason these plasmids can be widely disseminated in breeding environments. Whole genome sequencing indicated that ISEcp1 and IS1294 played important roles in blaCMY-2 transfer to both plasmids and the chromosome. Our study confirmed that blaCMY-2 mediated resistance of food animal-derived E. coli to 3GC and highlights the urgent need for appropriate monitoring programmes.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Chromosomes , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Plasmids/genetics , beta-Lactamases/genetics
10.
Front Microbiol ; 13: 846954, 2022.
Article in English | MEDLINE | ID: mdl-35464949

ABSTRACT

IncHI2 plasmids, possessing high flexibility and genetic plasticity, play a vital role in the acquisition and transmission of resistance determinants. Polymorphic mobile genetic elements (MGEs) generated by a chromosomally integrated IncHI2 plasmid in an individual Salmonella isolate have not yet been detected, and the mechanisms of the formation, excision, and dynamic evolution of a multidrug-resistant chromosomally integrated plasmid (MRCP) have remained obscure. Herein, we identified a 260-kb bla CTX-M-55-qnrS1-bearing IncHI2 plasmid within a Salmonella Muenster strain. Plenty of heterogeneous MGEs (new Escherichia coli chromosomally integrated plasmid or circular plasmids with different profiles) were yielded when this MRCP was conjugated into E. coli J53 with a transfer frequency of 10-4-10-5 transconjugants per donor. A bioinformatic analysis indicated that replicative transposition and homologous recombination of IS26 elements were particularly active, and the truncated Tn1721 also played a vital role in the formation of MRCP offspring. More importantly, when released from the chromosome, MRCP could capture and co-transfer adjacent chromosomal segments to form larger plasmid progeny than itself. Stability and growth kinetics assays showed that the biological characteristics of MRCP progeny were differentiated. This study provides an insight into a flexible existence of MRCP. The conversion between vertical and horizontal transmission endowed MRCP with genetic stability as a chromosomal coding structure and transferability as extra-chromosomal elements. This alternation may accelerate the acquisition and persistence of antibiotic resistance of clinical pathogens and enhance their ability to respond to adverse environments, which poses a great challenge to the traditional antibiotic treatment.

11.
mSystems ; 6(4): e0064621, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34254816

ABSTRACT

Carbapenem-resistant Enterobacteriaceae are some of the most important pathogens responsible for nosocomial infections, which can be challenging to treat. The blaNDM carbapenemase genes, which are expressed by New Delhi metallo-ß-lactamase (NDM)-producing Escherichia coli isolates, have been found in humans, environmental samples, and multiple other sources worldwide. Importantly, these genes have also been found in farm animals, which are considered an NDM reservoir and an important source of human infections. However, the dynamic evolution of blaNDM genetic contexts and blaNDM-harboring plasmids has not been directly observed, making it difficult to assess the extent of horizontal dissemination of the blaNDM gene. In this study, we detected NDM-1 (n = 1), NDM-5 (n = 24), and NDM-9 (n = 8) variants expressed by E. coli strains isolated from poultry in China from 2016 to 2017. By analyzing the immediate genetic environment of the blaNDM genes, we found that IS26 was associated with multiple types of blaNDM multidrug resistance regions, and we identified various IS26-derived circular intermediates. Importantly, in E. coli strain GD33, we propose that IncHI2 and IncI1 plasmids can fuse when IS26 is present. Our analysis of the IS26 elements flanking blaNDM allowed us to propose an important role for IS26 elements in the evolution of multidrug-resistant regions (MRRs) and in the dissemination of blaNDM. To the best of our knowledge, this is the first description of the dynamic evolution of blaNDM genetic contexts and blaNDM-harboring plasmids. These findings could help proactively limit the transmission of these NDM-producing isolates from food animals to humans. IMPORTANCE Carbapenem resistance in members of the order Enterobacterales is a growing public health problem that is associated with high mortality in developing and industrialized countries. Moreover, in the field of veterinary medicine, the occurrence of New Delhi metallo-ß-lactamase-producing Escherichia coli isolates in animals, especially food-producing animals, has become a growing concern in recent years. The wide dissemination of blaNDM is closely related to mobile genetic elements (MGEs) and plasmids. Although previous analyses have explored the association of many different MGEs with mobilization of blaNDM, little is known about the evolution of various genetic contexts of blaNDM in E. coli. Here, we report the important role of IS26 in forming multiple types of blaNDM multidrug resistance cassettes and the dynamic recombination of plasmids bearing blaNDM. These results suggest that significant attention should be paid to monitoring the transmission and further evolution of blaNDM-harboring plasmids among E. coli strains of food animal origin.

12.
J Glob Antimicrob Resist ; 26: 222-226, 2021 09.
Article in English | MEDLINE | ID: mdl-34245899

ABSTRACT

OBJECTIVES: This study reports identification of the carbapenemase-encoding gene from carbapenem-resistant Enterobacterales from food animals. METHODS: A total of 40 bacterial isolates recovered from 475 faecal swabs obtained on one farm were tested for the presence of the blaNDM-1 gene by PCR. Species identification of three blaNDM-1-positive strains was conducted by MALDI-TOF/MS. Antimicrobial susceptibility testing was performed by broth microdilution. Transferability of the blaNDM-1 and cfr genes was determined by filter mating. The genetic environment of blaNDM-1 and cfr was analysed by whole-genome sequencing. RESULTS: Two Proteus mirabilis (JPM24 and YPM35) and one Providencia rettgeri (YPR25) carried blaNDM-1. The blaNDM-1 genes were located on conjugable pPrY2001-like plasmids often reported to carry important antimicrobial resistance genes (ARGs). YPR25 and YPM35 shared two almost identical conjugable plasmids, one carrying blaNDM-1 and the other cfr. The blaNDM-1 gene in YPR25 (same as YPM35) and JPM24 was located in two novel transposons, designated Tn6922 and Tn6923, respectively. Tn6922 and Tn6923 carried 14 and 7 ARGs, respectively, and both contained multiple copies of IS26 in the same direction, with a high degree of similarity. Additionally, cfr was located on a plasmid with an unreported high frequency of conjugative transfer in YPR25 (same as YPM35). CONCLUSION: We identified two novel blaNDM-1-containing transposons (Tn6922 and Tn6923) present on pPrY2001-like plasmids. The pPrY2001-like blaNDM-1 plasmids coexisted with a novel cfr plasmid, and both could transfer at high frequency, highlighting the importance of continuous surveillance of multiresistant Enterobacterales of animal origin that can serve as a reservoir for ARGs.


Subject(s)
Enterobacteriaceae , Providencia , Animals , Enterobacteriaceae/genetics , Plasmids/genetics , Providencia/genetics , beta-Lactamases
13.
Front Microbiol ; 12: 663731, 2021.
Article in English | MEDLINE | ID: mdl-34025618

ABSTRACT

Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.

14.
Antibiotics (Basel) ; 10(4)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916584

ABSTRACT

The aim of this study was to elucidate the prevalence of blaCTX-M-27-producing Escherichia coli and transmission mechanisms of blaCTX-M-27 from swine farms in China. A total of 333 E. coli isolates were collected from two farms from 2013 to 2016. Thirty-two CTX-M-27-positive E. coli were obtained, and all were multidrug-resistant. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) profiles indicated a wide range of strain types that carried blaCTX-M-27, and the sequence type ST10 predominated. Conjugation, replicon typing, S1-PFGE and hybridization experiments confirmed that 28 out of 32 CTX-M-27 positive isolates carried blaCTX-M-27 genes on plasmids F18:A-:B10 (16) and F24:A-:B1 (12).The blaCTX-M-27 genes for 24 isolates were transmitted by plasmids with sizes ranging from 40 to 155 kb. A comparative analysis with blaCTX-M-27-plasmids indicated that the tra-trb region of F24:A-:B1 plasmids was destroyed by insertion of a complex region (eight isolates) and a novel structure containing blaCTX-M-27 in the F18:A-:B10 plasmids (12 isolates). The novel structure increased the stability of the blaCTX-M-27 gene in E. coli. This study indicated that the predominant vehicle for blaCTX-M-27 transmission has diversified over time and that control strategies to limit blaCTX-M-27 transmission in farm animals are necessary.

15.
Poult Sci ; 100(2): 1093-1097, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518068

ABSTRACT

Florfenicol, apramycin, and danofloxacin are antibiotics approved only for veterinary use and that have good therapeutic effects on chicken respiratory infections caused by Escherichia coli. We established epidemiological cutoff values (ECV) for these antibiotics using 363 E. coli isolates from tracheal samples of chickens in 5 veterinary clinics in Guangdong Province, China. The minimum inhibitory concentrations (MIC) were determined using the agar dilution method as per Clinical and Laboratory Standards Institution guidelines. The ECV were then calculated using the statistical method and verified by normalized resistance interpretation and ECOFFinder software programs. The ECV of florfenicol, apramycin, and danofloxacin against E. coli were 16, 16, and 0.125 µg/mL, respectively. Susceptibility tests indicated that these isolates were resistant to florfenicol (66.7%), apramycin (22.3%), and danofloxacin (92.3%). Strains carrying floR were distributed in the range of MIC ≥32 µg/mL for florfenicol. Apramycin resistance was found in 77 strains (77/363, 21.1%), and isolates that carried aac(3)-IV were all in the range of MIC ≥512 µg/mL. Danofloxacin resistance was found in the range of MIC ≤0.125 µg/mL, but there were no mutations in the quinolone resistance-determining regions and plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrC, qnrD, aac-(6')-Ib-cr, qep, and oqxB. The presence of the qnrS gene was verified in a few of the strains with an MIC of 0.06 µg/mL. The establishment of ECV was significant for monitoring of resistance development and therapy guidance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Poultry Diseases/drug therapy , Respiratory Tract Infections/veterinary , Animals , Anti-Bacterial Agents/therapeutic use , China/epidemiology , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests/veterinary , Nebramycin/analogs & derivatives , Nebramycin/pharmacology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology
16.
Vet Microbiol ; 253: 108944, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33370618

ABSTRACT

The aim of this study was to explore the characteristics of blaCTX-M-27 carriage and mobilization in Salmonella and Escherichia coli isolates from food-producing animals in China. A total of 2280 E. coli and 229 Salmonella isolates collected from food animals from June 2003 to September 2014 were screened for the presence of blaCTX-M-27 gene. The blaCTX-M-27-positive isolates were typed and plasmid DNA sequenced to determine the genetic context of blaCTX-M-27 and plasmid types present. Bacterial fitness was evaluated by growth curve and plasmid stability in vitro. CTX-M-27-positive E. coli (18, 0.79 %) and Salmonella (34, 14.85 %) were detected. PFGE profiles of CTX-M-27-positive strains revealed a wide variety of genotypes and S. Indiana was the most prevalent serotype. Replicon typing, S1-PFGE and hybridization of CTX-M-27-carrying plasmids confirmed that blaCTX-M-27 gene was located on IncFII (12/18), IncN (4/18), and non-typeable (2/18) plasmids in E. coli and on P1-like bacteriophage (21/34), IncP (4/34), IncFIB (4/34), IncN (2/34), IncHI2 (2/34), and IncA/C (1/34) plasmids in Salmonella. Comparison and analysis of gene context of blaCTX-M-27 in P1-like bacteriophage and plasmids revealed they shared the same structure and contained an identical genetic context with the Tn1721-like structure ΔISEcp1B-blaCTX-M-27-IS903D-iroN-Δmap-Tn1721. In addition, plasmid stability tests indicated that the blaCTX-M-27 P1-like bacteriophage were more stable than plasmids in the absence of cefotaxime selective pressure. These results demonstrate that Tn1721-like transposons harboring CTX-M-27 could be mobilized between different plasmids in E. coli and P1-like bacteriophage disseminated among Salmonella.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Salmonella/virology , beta-Lactamases/genetics , Animals , Animals, Domestic/microbiology , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Multiple, Bacterial , Escherichia coli/chemistry , Escherichia coli/drug effects , Food Microbiology , Microbial Sensitivity Tests , Plasmids/genetics , Salmonella/chemistry , Salmonella/drug effects , Salmonella/genetics
18.
Front Microbiol ; 11: 1582, 2020.
Article in English | MEDLINE | ID: mdl-32793137

ABSTRACT

The aim of this study was to investigate the characteristics of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant Salmonella isolate HNK130. HNK130 was isolated from a chicken and identified as ST17 Salmonella enterica serovar Indiana and exhibited resistance to 13 antibiotics including the cephalosporins and fosfomycin. S1 nuclease pulsed-field gel electrophoresis and Southern blot assays revealed that HNK130 harbored only one ∼180-kb plasmid carrying fosA3 and bla CTX-M-14, which was not transferable via conjugation. We further examined 107 Escherichia coli electro-transformants and identified 3 different plasmid variants, pT-HNK130-1 (69), pT-HNK130-2 (15), and pT-HNK130-3 (23), in which pT-HNK130-1 seemed to be the same as the plasmid harbored in HNK130. We completely sequenced an example of each of these variants, and all three variants were IncC-IncN multi-incompatible plasmid and showed a mosaic structure. The fosA3 gene was present in all three and bounded by IS26 elements in the same orientation (IS26-322bp-fosA3-1758bp-IS26) that could form a minicircle containing fosA3. The bla CTX-M-14 gene was located within an IS15DI-ΔIS15DI-iroN-IS903B-bla CTX-M-14 -ΔISEcp1-IS26 structure separated from the fosA3 gene in pT-HNK130-1, but was adjacent to fosA3 in pT-HNK130-3 in an inverted orientation. Linear comparison of the three variants showed that pT-HNK130-2 and pT-HNK130-3 resulted from the sequence deletion and inversion of pT-HNK130-1. Stability tests demonstrated that pT-HNK130-1 and pT-HNK130-3 could be stably maintained in the transformants without antibiotic selection but pT-HNK130-2 was unstable. This is the first description of an IncC-IncN hybrid plasmid from an ST17 S. Indiana strain and indicates that this plasmid may further facilitate dissemination of fosfomycin and cephalosporin resistance in Salmonella.

19.
J Antimicrob Chemother ; 75(10): 2773-2779, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32747937

ABSTRACT

BACKGROUND: Bacterial heteroresistance has been increasingly identified as an important phenomenon for many antibiotic/bacterium combinations. OBJECTIVES: To investigate ciprofloxacin heteroresistance in Salmonella and characterize mechanisms contributing to ciprofloxacin heteroresistance. METHODS: Ciprofloxacin-heteroresistant Salmonella were identified by population analysis profiling (PAP). Target mutations and the presence of PMQR genes were detected using PCR and sequencing. Expression of acrB, acrF and qnrS was conducted by quantitative RT-PCR. Competition ability and virulence were also compared using pyrosequencing, blue/white screening, adhesion and invasion assays and a Galleria model. Two subpopulations were whole-genome sequenced using Oxford Nanopore and Illumina platforms. RESULTS: PAP identified one Salmonella from food that yielded a subpopulation demonstrating heteroresistance to ciprofloxacin at a low frequency (10-9 to 10-7). WGS and PFGE analyses confirmed that the two subpopulations were isogenic, with six SNPs and two small deletions distinguishing the resistant from the susceptible. Both subpopulations possessed a T57S substitution in ParC and carried qnrS. The resistant subpopulation was distinguished by overexpression of acrB and acrF, a deletion within rsxC and altered expression of soxS. The resistant population had a competitive advantage against the parental population when grown in the presence of bile salts but was attenuated in the adhesion and invasion of human intestinal cells. CONCLUSIONS: We determined that heteroresistance resulted from a combination of mutations in fluoroquinolone target genes and overexpression of efflux pumps associated with a deletion in rsxC. This study warns that ciprofloxacin heteroresistance exists in Salmonella in the food chain and highlights the necessity for careful interpretation of antibiotic susceptibility.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Drug Resistance, Multiple, Bacterial , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Salmonella/drug effects , Salmonella enterica/drug effects , Salmonella enterica/genetics , Serogroup
20.
Nat Commun ; 11(1): 1427, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188862

ABSTRACT

Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial , Gastrointestinal Microbiome , Swine/microbiology , Adult , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Farms , Gastrointestinal Tract/microbiology , Humans , Male , Occupational Exposure , Schools, Veterinary , Students/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...