Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6946, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138169

ABSTRACT

Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.


Subject(s)
Bacterial Capsules , Bacterial Proteins , Gene Expression Regulation, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , RNA, Bacterial , RNA, Small Untranslated , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Animals , Virulence/genetics , Mice , Klebsiella Infections/microbiology , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Humans , Female , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/genetics
2.
Toxins (Basel) ; 14(8)2022 07 30.
Article in English | MEDLINE | ID: mdl-36006187

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins, raising serious global health and economic problems. Searching for biological approaches for effective and safe AFB1 degradation is imminent. In our study, Microbacterium proteolyticum B204 isolated from bovine faeces degraded 77% of AFB1 after 24 h, becoming the first reported bacteria from the Microbacterium family to possess AFB1 degradation characteristics. Temperature variation showed little effect on its degradation ratio, demonstrating high thermostability of 75% and 79% after boiling and sterilization, respectively. We suppose that the components playing a key role during this process were proteins, considering the decreased degradation rate caused by Proteinase K. Cell viability detection on HepG2 cells indicated that the degradation products were much less toxic than pure AFB1. Furthermore, B204 cell-free culture supernatant also degraded AFB1-contaminated food, such as peanuts, corn and cheese. These results suggested that this strain with AFB1 degradation properties could be a prospective candidate for application in the food and feed industries.


Subject(s)
Aflatoxin B1 , Arachis , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Animals , Arachis/metabolism , Cattle , Feces , Inactivation, Metabolic , Microbacterium
SELECTION OF CITATIONS
SEARCH DETAIL