Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
2.
Environ Geochem Health ; 46(3): 98, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393462

ABSTRACT

Microplastics, which have a diameter of less than 5 mm, are becoming an increasingly prevalent contaminant in terrestrial and aquatic ecosystems due to the dramatic increase in plastic production to 390.7 million tonnes in 2021. Among all the plastics produced since 1950, nearly 80% ended up in the environment or landfills and eventually reached the oceans. Currently, 82-358 trillion plastic particles, equivalent to 1.1-4.9 million tonnes by weight, are floating on the ocean's surface. The interactions between microorganisms and microplastics have led to the transportation of other associated pollutants to higher trophic levels of the food chain, where microplastics eventually reach plants, animals, and top predators. This review paper focuses on the interactions and origins of microplastics in diverse environmental compartments that involve terrestrial and aquatic food chains. The present review study also critically discusses the toxicity potential of microplastics in the food chain. This systematic review critically identified 206 publications from 2010 to 2022, specifically reported on microplastic transport and ecotoxicological impact in aquatic and terrestrial food chains. Based on the ScienceDirect database, the total number of studies with "microplastic" as the keyword in their title increased from 75 to 4813 between 2010 and 2022. Furthermore, various contaminants are discussed, including how microplastics act as a vector to reach organisms after ingestion. This review paper would provide useful perspectives in comprehending the possible effects of microplastics and associated contaminants from primary producers to the highest trophic level (i.e. human health).


Subject(s)
Food Chain , Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Bioengineered ; 14(1): 2252228, 2023 12.
Article in English | MEDLINE | ID: mdl-37661811

ABSTRACT

Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.


Subject(s)
Biofuels , Microalgae , Biomass , Bioengineering , Biomedical Engineering
4.
Chemosphere ; 326: 138495, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36963588

ABSTRACT

Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Textiles , Environmental Pollutants/toxicity
5.
Environ Pollut ; 318: 120858, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36521719

ABSTRACT

Land-based sources have been considered the most important sources of microplastic pollution to the coastal and marine environment. The number of research studies examining microplastic pollution in freshwater and inland water systems is increasing, but most research focuses on rivers, reservoirs, and lakes. This study investigated the spatial-temporal distribution, characteristics, sources, and risks of microplastics in irrigation water in Taiwan. The results showed that microplastics were widely and unevenly distributed along the irrigation system and were abundant at sites surrounded by a dense population and sites that received lateral canal and urban runoff input. The abundance of microplastics ranged from 1.88 items/L to 141 items/L, and samples collected in May had the highest microplastic concentrations. Polypropylene, polyethylene, and polystyrene were identified as the predominant polymers. Fibers (36-64%) were the most typical and abundant shape, and 333-1000 µm size (49-63%) and white/transparent (45-51%) were the dominant size and colors among all samples. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to assess the impact of the rainy season and typhoons and addressed the dramatic changes in distinct population densities. The polymer risk index was calculated to evaluate the environmental risk of microplastics in irrigation water, and the results revealed a high microplastic risk throughout the year except in November and January. This study provided a valuable reference and impetus for a better understanding of the microplastic profile and source apportionment in irrigation water, which was important for environmental management.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water/analysis , Lakes/analysis , China
6.
Article in English | MEDLINE | ID: mdl-36231650

ABSTRACT

The presence of microplastics (MPs) in marine environments has become increasingly apparent. Owing to the lack of effective solid waste management, Indonesia is the second largest producer of ocean plastic waste after China. Currently, information about pollution of MPs in the sediments of East Surabaya, Indonesia, is not available, and this issue is addressed in this study for the first time. Sediment samples were collected from 16 sampling sites along urban and mangrove coastal areas. MPs were observed in most of the sampling sites, with abundances ranging from ND (not detected) to 598 items/kg. MP shapes constituted fragments (30%), foam (28%), granules (22%), and fibers (20%). The 500-1000 µm fraction was the dominant size of MPs. Polypropylene was the major polymer constituent, followed by high-density polyethylene and polyethylene. Findings from Spearman's correlation coefficients, principal component analysis, and hierarchical cluster analysis reveal that the spatial pattern of MPs is closely related to coastal characteristics and population density. MPs in different coastal regions were assessed by the polymer risk index. Results reveal that coastal areas in the Bulak district exhibit the highest risk. Our results confirm the prevalence of MPs as anthropogenic pollutants in East Surabaya and highlight the importance of management action and education on environmental protection for the mitigation of MP pollution.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring/methods , Environmental Pollutants/analysis , Geologic Sediments/analysis , Indonesia , Microplastics , Plastics/analysis , Polyethylene/analysis , Polypropylenes/analysis , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 821: 153387, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35081412

ABSTRACT

Ocean life forms are fundamentally well adapted to natural environmental variations, and they can even tolerate extreme conditions for a short time. However, several anthropogenic stressors are causing such drastic changes in the ocean ecosystem. First, the review attempts to outline the impact of climatic and non-climatic stressors on ocean life, and it also outlines the synergistic impact of both stressors. Then the impact on human health caused by the damage of the marine ecosystem has been discussed. Furthermore, the type of prior studies and current mitigation adaptation programs have been presented. Finally, some perspectives about future research and mitigation adaptation are offered.


Subject(s)
Adaptation, Physiological , Ecosystem , Acclimatization , Climate Change , Humans , Oceans and Seas
8.
Chemosphere ; 264(Pt 2): 128579, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33065326

ABSTRACT

Perfluoroalkyl substances (PFASs) are found globally in the environment, but for Taiwan there is a lack of studies on PFAS occurrence, source apportionment, and health risks in drinking water sources. We collected surface water samples from the Baoshan Reservoir of Taiwan and used Positive Matrix Factorization to attribute PFAS contaminants to possible sources. The health index (HI) was used to evaluate the health risk, which was then compared to various international advisory level guidelines. PFOA and PFOS were found to be the most predominant compounds, with concentrations averaging 20.2 ng/L and 16.7 ng/L, respectively. The joint contribution of domestic and commercial waste totaled 61.2% as the predominant source of pollution, followed by urban activities as a secondary source contributing 38.8%. Using the USEPA reference dose, a health risk analysis of Baoshan Reservoir drinking water did not reflect a formal high health risk (HI < 1.0), however potential risks to human health may be present since the sum of PFOA and PFOS (130 ng/L) exceeded the USEPA Lifetime Health Advisory level (70 ng/L). This investigation provides information and reference points for further reviews of PFAS presence in public water supplies.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Environmental Monitoring , Fluorocarbons/analysis , Humans , Taiwan , Water Pollutants, Chemical/analysis
9.
Environ Int ; 139: 105699, 2020 06.
Article in English | MEDLINE | ID: mdl-32305742

ABSTRACT

Although perfluoroalkyl substances (PFASs) are ubiquitous in the Arctic, their dominant pathways to the Arctic remain unclear. Most modeling studies support major oceanic transport for PFASs in the Arctic seawater, but this conclusion contradicts the rapid response of PFASs to global emissions in some biota species. Sediments, which act as important PFAS sinks for seawater and potential PFAS source to the benthic food web, are important for interpreting the fate of PFASs in the Arctic. Here we investigate the occurrence of 9 PFASs in one core (1945-2014) and 29 surface sediments from the Bering Sea to the western Arctic. Total PFAS concentrations (0.06-1.73 ng/g dw) in surface sediments were dominated by perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluorobutyl sulfonate (PFBS), with higher levels in the Bering Sea slope and the northeast Chukchi Sea. Historical trends in PFASs varied among individuals, with PFOS declining in the early 2000s while PFNA showing an increasing up-core trend. Analysis of positive matrix factorization model identified that the major PFAS sources in the sediment core were dominated by the atmospheric oxidation of consumer use of PFOS precursor-based products (45.0%), while the oceanic transport of fluoropolymer manufacture of polyvinylidene fluoride (mainly PFNA) exhibited an increasing trend over time, becoming dominant in surface sediments (42.8%). Besides, local input of possible aqueous fire-fighting foams (mainly PFOS and PFBS) also acted as an important source currently (30.1%) and historically (34.9%). Our study revealed that the pathways of PFASs in Arctic sediments varied greatly for individuals and the conclusion of PFOS originating from mainly atmospheric oxidation was different from seawater modeling results. This, together with the high possibility of sediments as direct source to Arctic food web (supported by similar PFAS compositions and temporal variations), help provide additional evidence regarding PFAS pathways to the Arctic.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Arctic Regions , Environmental Monitoring , Fluorocarbons/analysis , Geologic Sediments , Humans , Oceans and Seas , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 225: 9-18, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30856475

ABSTRACT

Alkylphenol ethoxylates (APEOs) are one of the most widely used classes of surfactants, but they are also ubiquitous environmental pollutants and known endocrin-disrupting chemicals. This study is the first to investigate the spatiotemporal variations and possible sources of APEOs and their metabolites, including nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs), in coastal sediments off southwestern Taiwan. The highest APEO concentration in the dry season was observed for the Kaohsiung coastal area, whereas the highest alkylphenol (AP) concentration in the wet season was found offshore at the Tainan Canal exit. No continuous accumulation of alkylphenol metabolites was evident in the area. One possible reason is that seasonal current and wind waves disperse the coastal pollutants. Application of multivariate statistical tools (hierarchical cluster analysis and principal component analysis) confirmed the role of rivers and the Tainan Canal in transporting contaminants to coastal environments, suggesting influences of industrial and human activities on APEO distribution. A further comparison with the predicted no-effect concentrations (PNECs) proposed by the European Union indicates that nonylphenol (NP) and octylphenol (OP) might pose potential ecological risks to the aquatic environment in the studied area. These findings provide useful information for environmental policy implementation and ecological assessments of different types of endocrine-disrupting chemicals and raise warnings about surfactant applications.


Subject(s)
Ecology , Endocrine Disruptors/analysis , Environmental Pollutants/analysis , Spatio-Temporal Analysis , Surface-Active Agents/analysis , Water Pollutants, Chemical/analysis , Ethylene Oxide/metabolism , Geologic Sediments/analysis , Geologic Sediments/chemistry , Phenols , Seasons , Taiwan
11.
ACS Appl Mater Interfaces ; 11(1): 1426-1439, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30543389

ABSTRACT

Porous materials have been identified as efficient sorbent media to remove volatile organic compounds. To evaluate their potential as adsorbents, the adsorptive removal of formaldehyde (FA) in aqueous environments was investigated using four materials, two water-stable metal-organic frameworks (MOFs) of UiO-66 (U6) and U6-NH2 (U6N) and two covalent organic polymers (COPs) with amine-functionality, CBAP-1-EDA (CE) and CBAP-1-DETA (CD). U6N exhibited the highest removal capacity of 93% (0.56 mg g-1) of the tested materials [e.g., CE (81.1%, 0.53 mg g-1) > CD (67.2%, 0.43 mg g-1) > U6 (66.9%, 0.42 mg g-1)], which was 2 times higher than that of the reference sorbent, activated carbon (AC: 50%, 0.30 mg g-1). The results of Fourier transform infrared and powder X-ray diffraction analyses confirmed the interactions between FA molecules and the amine components of the materials (U6N, CD, and CE). According to density functional theory calculations, the formation of hydrogen bonds between FA molecules and amine components was apparent and was further verified by FA/amine distance (CD: 2.83, CE: 2.88, and U6N: 2.66 Å) along with enthalpy values (CD: -32.4, CE: -45.5, and U6N: -272 kJ mol-1). In case of U6, the major interactions occurred in the metal-clusters (-19.3 kJ mol-1) via electrostatic interactions (distance: 5.49 Å). Furthermore, the sorption by amine-functionalized materials such as U6N is suggested to be dominated by hydrogen bonding which ultimately led to the formation of imine. If the performance of the tested materials is evaluated in terms of partition coefficient, U6N (1153 mg g-1 mM-1) is found as the outperformer in all tested subjects. Regeneration of spent MOFs/COPs was also plausible in the presence of ethanol to maintain their structural integrity even after 10 adsorption-desorption cycles. Overall, the selected MOFs/COPs were seen to have very high removal capacity for hazardous FA molecules in aqueous phase.

12.
Environ Pollut ; 208(Pt A): 79-86, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26162477

ABSTRACT

To characterize the source contributions of chemicals of emerging concern (CECs) from different aquatic environments of Taiwan, we collected water samples from different aquatic systems, which were screened for 30 pharmaceuticals and illicit drugs. The total estimated mass loadings of CECs were 23.1 g/d in southern aquatic systems and 133 g/d in central aquatic systems. We developed an analytical framework combining pollutant fingerprinting, hierarchical cluster analysis (HCA), and principal component analysis with multiple linear regression (PCA-MLR) to infer the pharmaco-signature and source contributions of CECs. Based on this approach, we estimate source contributions of 62.2% for domestic inputs, 16.9% for antibiotics application, and 20.9% for drug abuse/medication in southern aquatic system, compared with 47.3% domestic, 35.1% antibiotic, and 17.6% drug abuse/medication inputs to central aquatic systems. The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems, which are of importance for environmental management.


Subject(s)
Rivers/chemistry , Water Pollutants, Chemical/analysis , Cluster Analysis , Environmental Monitoring/methods , Linear Models , Multivariate Analysis , Principal Component Analysis , Quality Control , Taiwan , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
13.
PLoS One ; 10(4): e0122813, 2015.
Article in English | MEDLINE | ID: mdl-25874375

ABSTRACT

This paper presents a methodology based on multivariate data analysis for characterizing potential source contributions of emerging contaminants (ECs) detected in 26 river water samples across multi-scape regions during dry and wet seasons. Based on this methodology, we unveil an approach toward potential source contributions of ECs, a concept we refer to as the "Pharmaco-signature." Exploratory analysis of data points has been carried out by unsupervised pattern recognition (hierarchical cluster analysis, HCA) and receptor model (principal component analysis-multiple linear regression, PCA-MLR) in an attempt to demonstrate significant source contributions of ECs in different land-use zone. Robust cluster solutions grouped the database according to different EC profiles. PCA-MLR identified that 58.9% of the mean summed ECs were contributed by domestic impact, 9.7% by antibiotics application, and 31.4% by drug abuse. Diclofenac, ibuprofen, codeine, ampicillin, tetracycline, and erythromycin-H2O have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in Taiwan.


Subject(s)
Pharmaceutical Preparations/analysis , Risk Assessment/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Algorithms , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Cluster Analysis , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Geography , Linear Models , Models, Theoretical , Multivariate Analysis , Pharmaceutical Preparations/classification , Principal Component Analysis , Risk Assessment/statistics & numerical data , Seasons , Taiwan , Water Pollutants, Chemical/toxicity
14.
Environ Sci Technol ; 49(2): 792-9, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25495157

ABSTRACT

The youth festival as we refer to Spring Scream, a large-scale pop music festival, is notorious for the problems of drug abuse and addiction. The origin, temporal magnitudes, potential risks and mass inputs of emerging contaminants (ECs) were investigated. Thirty targeted ECs were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Sampling strategy was designed to characterize EC behavior in different stages (before and after the youth festival), based on multivariate data analysis to explore the contributions of contaminants from normal condition to the youth festival. Wastewater influents and effluents were collected during the youth festival (approximately 600 000 pop music fans and youth participated). Surrounding river waters are also sampled to illustrate the touristic impacts during peak season and off-season. Seasonal variations were observed, with the highest concentrations in April (Spring Scream) and the lowest in October (off-season). Acetaminophen, diclofenac, codeine, ampicillin, tetracycline, erythromycin-H2O, and gemfibrozil have significant pollution risk quotients (RQs > 1), indicating ecotoxicological concerns. Principal component analysis (PCA) and weekly patterns provide a perspective in assessing the touristic impacts and address the dramatic changes in visitor population and drug consumption. The highest mass loads discharged into the aquatic ecosystem corresponded to illicit drugs/controlled substances such as ketamine and MDMA, indicating the high consumption of ecstasy during Spring Scream.


Subject(s)
Environmental Monitoring/methods , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Adolescent , Chromatography, Liquid , Fresh Water/chemistry , Geography , Holidays , Humans , Ketamine/analysis , Music , N-Methyl-3,4-methylenedioxyamphetamine/analysis , Principal Component Analysis , Seasons , Solid Phase Extraction , Taiwan , Tandem Mass Spectrometry , Time Factors , Wastewater
15.
Mar Pollut Bull ; 85(2): 391-9, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24439316

ABSTRACT

This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters.


Subject(s)
Seawater/chemistry , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Aquatic Organisms/drug effects , Caffeine/analysis , Caffeine/chemistry , Carbamazepine/analysis , Carbamazepine/chemistry , Chromatography, Liquid , Environmental Monitoring/methods , Gemfibrozil/analysis , Gemfibrozil/chemistry , Humans , Ketamine/analysis , Ketamine/chemistry , N-Methyl-3,4-methylenedioxyamphetamine/analysis , N-Methyl-3,4-methylenedioxyamphetamine/chemistry , Population Density , Pseudoephedrine/analysis , Pseudoephedrine/chemistry , Risk , Rivers/chemistry , Solid Phase Extraction , Taiwan , Tandem Mass Spectrometry , Water Pollutants, Chemical/chemistry
16.
J Environ Manage ; 110: 179-87, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22789653

ABSTRACT

Instantaneous air-water polycyclic aromatic hydrocarbons (PAHs) exchange fluxes were calculated in 22 pairs of ambient air and water samples from Kaohsiung Harbor lagoon, from December 2003 to January 2005. The highest net volatilization (3135 ng m(-2) day(-1)) and absorptive (-1150 ng m(-2) day(-1)) fluxes in the present study were obtained for the three-ring PAH phenanthrene on 7 April and 27 January 2004, respectively. All PAH diffusive fluxes for three-ring PAHs except phenanthrene were mainly volatilization exchange across the air-water interface. Phenanthrene and the four-ring PAHs were absorbed primarily from the atmosphere and deposited to the surface water, although some minor volatilization fluxes were also observed. Differences in flux magnitude and direction between the dry and wet seasons were also evident for PAHs. Strong absorptive/weaker volatilization PAH fluxes occurred in the dry season, but the opposite was found in the wet season. The mean daily PAH diffusive fluxes were an in flux of -635 ng m(-2) day(-1) in the dry season and an efflux of 686 ng m(-2) day(-1) in the wet season. The integrated absorbed and emitted fluxes of PAHs for harbor lagoon surface waters in the dry and wet seasons were 3.1 kg and 3.4 kg, respectively. Different from water bodies located in temperate zone, phenanthrene diffusive fluxes in Kaohsiung Harbor lagoon was favored in volatilization from surface waters during the wet season (April to September) because of scavenging by precipitation and dilution by prevailing southwesterly winds. In addition, this study used both of salinity and temperature to improve estimation of Henry's law constants (H) of PAHs in a tropical coastal area and show that correction for salinity produced 13-15% of differences in H values.


Subject(s)
Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/chemistry , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/chemistry , Seasons , Solubility , Taiwan , Volatilization , Water Pollutants, Chemical/chemistry
17.
Mar Pollut Bull ; 62(4): 815-23, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21269652

ABSTRACT

Very little information is available on the contamination of coastal sediments of Taiwan by PBDEs and PCBs. In this study, we determined the concentrations of 19 PBDE and 209 PCB congeners in 57 surface sediment samples to identify the possible sources of PBDEs and PCBs. The total PBDE and PCB concentrations ranged from below detection limit to 7.73 ng/g and 0.88-7.13 ng/g, respectively; these values are within the ranges observed for most coastal sediments worldwide. The PBDE congeners were dominated by BDE-209 (50.7-99.7%), with minor contributions from penta- and octa-BDEs. The signatures of PCB congeners suggested that PCB residues in Kaohsiung coast may be the legacy of past use or the result of ongoing inputs from the maintenance, repair and salvage of old ships. Principal component analysis of the congener-specific composition of PBDEs and PCBs revealed distinct regional patterns that are related to the use of commercial products.


Subject(s)
Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Taiwan , Water Pollution, Chemical/statistics & numerical data
18.
Mar Pollut Bull ; 58(5): 752-60, 2009 May.
Article in English | MEDLINE | ID: mdl-19181350

ABSTRACT

Fifty-seven surface sediment samples were collected from the coast of southwest Taiwan and analyzed for polycyclic aromatic hydrocarbons (PAHs). Concentrations of total PAHs (28 PAH compounds) ranged from 15 to 907 ng g(-1) dry weight. Diagnostic ratios showed that PAHs in the sediments of the Gaoping estuary were predominantly of petroleum origin, whereas sediments from the Kaohsiung coast contained principally combustion-derived PAHs. Principal component analysis indicated that emissions from automobiles and coal burning were the main sources of combustion-derived PAHs. The relatively high ratios of perylene/penta-aromatic PAH isomers in sediments from the Tainan coast and some off-shore stations on the Kaohsiung coast suggest a significant diagenetic PAH contribution. The study shows that certain diagnostic ratios are useful and sensitive in delineating the distribution of PAHs from specific sources in southwest Taiwan. The phenanthrene/anthracene ratio is a better indicator than the methylphenanthrenes/phenanthrene ratio for tracing petrogenic PAHs, and the benzo(a)anthracene/chrysene and indeno(1,2,3-c,d)pyrene/benzo(g,h,i)perylene ratios are more specific than the benzo(a)pyrene/benzo(e)pyrene and benzo(b)fluoranthcene/benzo(k)fluoranthcene ratios in distinguishing PAHs from various pyrogenic sources.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Cluster Analysis , Particle Size , Principal Component Analysis , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...