Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Int J Biol Macromol ; : 133662, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025188

ABSTRACT

Fusarium pseudograminearum, the causal agent of Fusarium crown rot, poses a significant threat to cereal crops. Building upon our previous investigation of the transcriptional response of this pathogen to four key fungicides (carbendazim, phenamacril, pyraclostrobin, and tebuconazole), this study delves into the impact of elevated fungicide concentrations using RNA-seq. Global transcriptomic analysis and gene clustering revealed significant enrichment of genes involved in the ABC transporter pathway. Among these transporters, FPSE_06011 (FpZRA1), a conserved gene in eukaryotes, exhibited consistent upregulation at both low and high fungicide concentrations. Targeted deletion of FpZRA1 resulted in reduced sporulation, spore germination, and tolerance to cell wall stress, osmotic stress, and oxidative stress. Furthermore, the FpZRA1 knockout mutants exhibited decreased pathogenicity on wheat coleoptiles and reduced production of the mycotoxin deoxynivalenol (DON), as evidenced by the markedly down-regulated expression of TRI5, TRI6, and TRI10 in the RT-qPCR analysis. In summary, our findings highlight the impact of fungicide concentration on transcriptional reprogramming in F. pseudograminearum and identify FpZRA1 as a critical regulator of fungal development, stress tolerance, and pathogenicity.

2.
Neurosci Res ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025266

ABSTRACT

Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.

3.
World J Gastrointest Surg ; 16(6): 1803-1824, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983344

ABSTRACT

BACKGROUND: Stomach adenocarcinoma (STAD) is one of the main reasons for cancer-related deaths worldwide. This investigation aimed to define the connection between STAD and Cuproptosis-related genes (CRGs). Cuproptosis is a newly identified form of mitochondrial cell death triggered by copper. AIM: To explore the identification of potential biomarkers for STAD disease based on cuproptosis. METHODS: A predictive model using Gene Ontology (GO), Least Absolute Shrinkage and Selection Operator (LASSO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Variation Analysis (GSVA), and Gene Set Enrichment Analysis analyzed gene interconnections, focusing on 3 copper-related genes and their expression in The Cancer Genome Atlas-STAD. Networks for mRNA-miRNA and mRNA-transcription factor interactions were constructed. The prognostic significance of CRG scores was evaluated using time-receiver operating characteristic, Kaplan-Meier curves, and COX regression analysis. Validation was conducted with datasets GSE26942, GSE54129, and GSE66229. Expression of copper-related differentially expressed genes was also analyzed in various human tissues and gastric cancer subpopulations using the human protein atlas. RESULTS: Three significant genes (FDX1, LIAS, MTF1) were identified and selected via LASSO analysis to predict and classify individuals with STAD into high and low CRG score subgroups. These genes were down-regulated in both risk categories. GO and KEGG analyses highlighted their involvement mainly in the electron transport chain. After validating their differential expression, FDX1 emerged as the most accurate diagnostic marker for gastric cancer. Additionally, the RCircos package localized FDX1 on chromosome 11. CONCLUSION: Our study revealed that FDX1 could be a potential biomarker and treatment target for gastric malignancy, providing new ideas for further scientific research.

4.
J Hepatol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992769

ABSTRACT

BACKGROUND & AIMS: The changes of HBV-specific B-cells in chronic hepatitis B (CHB) patients underwent pegylated interferon-alfa (PEG-IFNα) treatment and achieved functional cure remain unclear. We aimed to evaluate the alterations in HBV-specific B-cells during treatment and therefore explored the mechanism of functional recovery of HBsAg-specific B-cells. METHODS: We included 39 nucleos(t)ide analogues-treated CHB patients who received sequential combination therapy with PEG-IFNα and 8 treatment-naive CHB patients. HBV-specific B-cells were characterized ex vivo using fluorescent labeled HBsAg and HBcAg. The frequency, phenotype, and subsets of HBV-specific B-cells and follicular helper T cells (Tfh-cells) were detected using flow cytometry. The functionality of HBV-specific B-cells was quantified through ELISpot assays. RESULTS: During treatment, the fraction of activated memory B-cells (MBCs) among HBsAg-specific B-cells and the expression of IgG, CXCR3, and CD38 increased. Antibody-secretion capacity of HBsAg-specific B-cell was restored after treatment only in patients with a functional cure and it showed a positive correlation with serum hepatitis B surface antibody levels. The phenotype and function of HBsAg-specific B-cells differed between patients with and without functional cure. Patients with functional cure exhibited IgG+ classical MBCs and plasmablasts in HBsAg-specific B-cells. HBcAg-specific B-cells displayed both attenuated antibody secretion with reduced IgG expression and an IgM+ atypical type of MBCs after treatment, irrespective of with and without functional cure. The number of CD40L+ Tfh-cells increased after PEG-IFNα treatment and positively correlated with HBsAg-specific B-cell activation. CONCLUSIONS: After PEG-IFNα treatment, HBsAg- and HBcAg-specific B-cells exhibit various changes in antibody secretion. Their functional differences are reflected in the alterations in phenotypes and subtypes. The presence of CD40L+ Tfh-cells is associated with the active recovery of HBsAg-specific B-cells. IMPACT AND IMPLICATIONS: HBV-related complications and hepatocellular carcinoma remain the leading causes of mortality from chronic liver disease worldwide, and a cure is rarely achieved with antiviral therapies. Elucidating the immunological mechanisms underlying the functional cure of CHB patients offers a promising therapeutic strategy for viral clearance, such as therapeutic vaccine. We analyzed the alterations in HBV-specific B-cells in patients treated with PEG-IFNα and identified novel pathways for immunotherapeutic boosting of B cell immunity.

5.
Respir Res ; 25(1): 269, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982492

ABSTRACT

BACKGROUND: Cystic Fibrosis causing mutations in the gene CFTR, reduce the activity of the CFTR channel protein, and leads to mucus aggregation, airway obstruction and poor lung function. A role for CFTR in the pathogenesis of other muco-obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD) has been well established. The CFTR modulatory compound, Ivacaftor (VX-770), potentiates channel activity of CFTR and certain CF-causing mutations and has been shown to ameliorate mucus obstruction and improve lung function in people harbouring these CF-causing mutations. A pilot trial of Ivacaftor supported its potential efficacy for the treatment of mucus obstruction in COPD. These findings prompted the search for CFTR potentiators that are more effective in ameliorating cigarette-smoke (CS) induced mucostasis. METHODS: Small molecule potentiators, previously identified in CFTR binding studies, were tested for activity in augmenting CFTR channel activity using patch clamp electrophysiology in HEK-293 cells, a fluorescence-based assay of membrane potential in Calu-3 cells and in Ussing chamber studies of primary bronchial epithelial cultures. Addition of cigarette smoke extract (CSE) to the solutions bathing the apical surface of Calu-3 cells and primary bronchial airway cultures was used to model COPD. Confocal studies of the velocity of fluorescent microsphere movement on the apical surface of CSE exposed airway epithelial cultures, were used to assess the effect of potentiators on CFTR-mediated mucociliary movement. RESULTS: We showed that SK-POT1, like VX-770, was effective in augmenting the cyclic AMP-dependent channel activity of CFTR. SK-POT-1 enhanced CFTR channel activity in airway epithelial cells previously exposed to CSE and ameliorated mucostasis on the surface of primary airway cultures. CONCLUSION: Together, this evidence supports the further development of SK-POT1 as an intervention in the treatment of COPD.


Subject(s)
Aminophenols , Bronchi , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Quinolones , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Quinolones/pharmacology , Aminophenols/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Bronchi/drug effects , Bronchi/metabolism , Smoke/adverse effects , Cells, Cultured , HEK293 Cells , Chloride Channel Agonists/pharmacology , Chloride Channel Agonists/therapeutic use , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism
6.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982550

ABSTRACT

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Subject(s)
Genetic Variation , Phylogeny , Rickettsiales , Ticks , China/epidemiology , Animals , Prevalence , Rickettsiales/genetics , Rickettsiales/isolation & purification , Rickettsiales/classification , Ticks/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Livestock/microbiology , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Mammals/microbiology , Humans
7.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951577

ABSTRACT

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Subject(s)
Click Chemistry , Mice, Inbred C57BL , Rickettsia , Animals , Rickettsia/genetics , Rickettsia/physiology , Mice , Click Chemistry/methods , Stomach/microbiology , Disease Models, Animal , Spotted Fever Group Rickettsiosis/microbiology , Female , Rickettsia Infections/microbiology , Azides/chemistry
8.
Huan Jing Ke Xue ; 45(7): 3965-3972, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022944

ABSTRACT

The aim of this study was to comprehensively understand the water environment quality status and its change trend in the Inner Mongolia section of the Yellow River Basin. To analyze the water quality in recent years,the water quality data in the Yellow River basin from 2003 to 2020 were firstly collected from five typical monitoring stations.Various data analysis methods, including principal component analysis, cluster analysis, and a long short-term memory model, were used along with an improved comprehensive water quality identification index to explore the spatiotemporal characteristics of water quality in the Yellow River Basin. The results showed that the overall water quality in the basin has improved and stabilized over time. In terms of temporal variation, there was a distinction between the wet season and dry season, with a better status observed during the wet season due to increased agricultural irrigation and higher water volume. Spatially, the five monitoring sections could be divided into three categories based on strong natural factors that maintained their temporal characteristics during the wet season; however, significant differences were observed during the dry season due to urban water usage patterns. Analysis using LSTM models revealed that ammonia nitrogen will continue to decline and have a decreasing impact on the comprehensive water quality. These findings provide valuable insights for the comprehensive management of water quality in Inner Mongolia's Yellow River Basin.

9.
Front Neurol ; 15: 1393022, 2024.
Article in English | MEDLINE | ID: mdl-38846044

ABSTRACT

Purpose: The prevalence of comorbid pain and Bipolar Disorder in clinical practice continues to be high, with an increasing number of related publications. However, no study has used bibliometric methods to analyze the research progress and knowledge structure in this field. Our research is dedicated to systematically exploring the global trends and focal points in scientific research on pain comorbidity with bipolar disorder from 2003 to 2023, with the goal of contributing to the field. Methods: Relevant publications in this field were retrieved from the Web of Science core collection database (WOSSCC). And we used VOSviewer, CiteSpace, and the R package "Bibliometrix" for bibliometric analysis. Results: A total of 485 publications (including 360 articles and 125 reviews) from 66 countries, 1019 institutions, were included in this study. Univ Toront and Kings Coll London are the leading research institutions in this field. J Affect Disorders contributed the largest number of articles, and is the most co-cited journal. Of the 2,537 scholars who participated in the study, Stubbs B, Vancampfort D, and Abdin E had the largest number of articles. Stubbs B is the most co-cited author. "chronic pain," "neuropathic pain," "psychological pain" are the keywords in the research. Conclusion: This is the first bibliometric analysis of pain-related bipolar disorder. There is growing interest in the area of pain and comorbid bipolar disorder. Focusing on different types of pain in bipolar disorder and emphasizing pain management in bipolar disorder are research hotspots and future trends. The study of pain related bipolar disorder still has significant potential for development, and we look forward to more high-quality research in the future.

10.
Adv Sci (Weinh) ; : e2308443, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922803

ABSTRACT

Tissue engineering has demonstrated its efficacy in promoting tissue regeneration, and extensive research has explored its application in rotator cuff (RC) tears. However, there remains a paucity of research translating from bench to clinic. A key challenge in RC repair is the healing of tendon-bone interface (TBI), for which bioactive materials suitable for interface repair are still lacking. The umbilical cord (UC), which serves as a vital repository of bioactive components in nature, is emerging as an important source of tissue engineering materials. A minimally manipulated approach is used to fabricate UC scaffolds that retain a wealth of bioactive components and cytokines. The scaffold demonstrates the ability to modulate the TBI healing microenvironment by facilitating cell proliferation, migration, suppressing inflammation, and inducing chondrogenic differentiation. This foundation sets the stage for in vivo validation and clinical translation. Following implantation of UC scaffolds in the canine model, comprehensive assessments, including MRI and histological analysis confirm their efficacy in inducing TBI reconstruction. Encouraging short-term clinical results further suggest the ability of UC scaffolds to effectively enhance RC repair. This investigation explores the mechanisms underlying the promotion of TBI repair by UC scaffolds, providing key insights for clinical application and translational research.

11.
Biomacromolecules ; 25(7): 4358-4373, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38924782

ABSTRACT

Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Chitosan , Gallic Acid , Hydrogels , Methacrylates , Chitosan/chemistry , Gallic Acid/chemistry , Gallic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Mice , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Methacrylates/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Cross-Linking Reagents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Nitric Oxide/metabolism
12.
J Pediatr Urol ; 20 Suppl 1: S43-S57, 2024.
Article in English | MEDLINE | ID: mdl-38944627

ABSTRACT

INTRODUCTION: Many pediatric urology conditions affect putatively normal tissues or appear too commonly to be based solely on specific DNA mutations. Understanding epigenetic mechanisms in pediatric urology, therefore, has many implications that can impact cell and tissue responses to settings, such as environmental and hormonal influences on urethral development, uropathogenic infections, obstructive stimuli, all of which originate externally or extracellularly. Indeed, the cell's response to external stimuli is often mediated epigenetically. In this commentary, we highlight work on the critical role that epigenetic machinery, such as DNA methyltransferases (DNMTs), Enhancer of Zeste Polycomb Repressive Complex 2 Subunit (EZH2), and others play in regulating gene expression and cellular functions in three urological contexts. DESIGN: Animal and cellular constructs were used to model clinical pediatric uropathology. The hypertrophy, trabeculation, and fibrosis of the chronically obstructed bladder was explored using smooth muscle cell models employing disorganised vs. normal extracellular matrix (ECM), as well as a new animal model of chronic obstructive bladder disease (COBD) which retains its pathologic features even after bladder de-obstruction. Cell models from human and murine hypospadias or genital tubercles (GT) were used to illustrate developmental responses and epigenetic dependency of key developmental genes. Finally, using bladder urothelial and organoid culture systems, we examined activity of epigenetic machinery in response to non uropathogenic vs. uropathogenic E.coli (UPEC). DNMT and EZH2 expression and function were interrogated in these model systems. RESULTS: Disordered ECM exerted a principal mitogenic and epigenetic role for on bladder smooth muscle both in vitro and in CODB in vivo. Key genes, e.g., BDNF and KCNB2 were under epigenetic regulation in actively evolving obstruction and COBD, though each condition showed distinct epigenetic responses. In models of hypospadias, estrogen strongly dysregulated WNT and Hox expression, which was normalized by epigenetic inhibition. Finally, DNA methylation machinery in the urothelium showed specific activation when challenged by uropathogenic E.coli. Similarly, UPEC induces hypermethylation and downregulation of the growth suppressor p16INK4A. Moreover, host cells exposed to UPEC produced secreted factors inducing epigenetic responses transmissible from one affected cell to another without ongoing bacterial presence. DISCUSSION: Microenvironmental influences altered epigenetic activity in the three described urologic contexts. Considering that many obstructed bladders continue to display abnormal architecture and dysfunction despite relief of obstruction similar to after resection of posterior valves or BPH, the epigenetic mechanisms described highlight novel approaches for understanding the underlying smooth muscle myopathy of this crucial clinical problem. Similarly, there is evidence for an epigenetic basis of xenoestrogen on development of hypospadias, and UTI-induced pan-urothelial alteration of epigenetic marks and propensity for subsequent (recurrent) UTI. The impact of mechanical, hormonal, infectious triggers on genitourinary epigenetic machinery activity invite novel avenues for targeting epigenetic modifications associated with these non-cancer diseases in urology. This includes the use of deactivated CRISPR-based technologies for precise epigenome targeting and editing. Overall, we underscore the importance of understanding epigenetic regulation in pediatric urology for the development of innovative therapeutic and management strategies.


Subject(s)
Epigenesis, Genetic , Humans , Animals , Child , Urologic Diseases/genetics , Urologic Diseases/pathology , Urologic Diseases/metabolism , Disease Models, Animal
13.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879309

ABSTRACT

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Subject(s)
Thyroid Gland , Zebrafish , Animals , Zebrafish/metabolism , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Larva/drug effects , Larva/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Molecular Docking Simulation , Thyroid Hormones/metabolism , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Thyroid Hormone Receptors beta/metabolism , Thyroid Hormone Receptors beta/genetics
14.
J Med Virol ; 96(6): e29711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847304

ABSTRACT

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Subject(s)
Genome, Viral , Phylogeny , Respiratory Tract Infections , Humans , China/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Male , Female , Retrospective Studies , Respiratory System/virology , Child, Preschool , Adult , Child , RNA, Viral/genetics , Middle Aged
15.
Ren Fail ; 46(2): 2363591, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38856314

ABSTRACT

Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Lipopolysaccharides , Membrane Proteins , Protein Serine-Threonine Kinases , Sepsis , Signal Transduction , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Membrane Proteins/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Signal Transduction/drug effects , Male , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Apoptosis/drug effects , Mice, Inbred C57BL , Cytokines/metabolism
16.
Bone ; 186: 117174, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917962

ABSTRACT

Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.


Subject(s)
Ligamentum Flavum , Ossification of Posterior Longitudinal Ligament , Spinal Stenosis , Up-Regulation , Humans , Male , Cell Differentiation/genetics , Ligamentum Flavum/pathology , Ligamentum Flavum/metabolism , Longitudinal Ligaments/pathology , Longitudinal Ligaments/metabolism , Ossification of Posterior Longitudinal Ligament/genetics , Ossification of Posterior Longitudinal Ligament/pathology , Ossification of Posterior Longitudinal Ligament/metabolism , Osteogenesis/genetics , Spinal Stenosis/pathology , Spinal Stenosis/genetics , Spinal Stenosis/metabolism , Up-Regulation/genetics
17.
Int Heart J ; 65(3): 498-505, 2024.
Article in English | MEDLINE | ID: mdl-38825494

ABSTRACT

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Subject(s)
Interleukin-10 , Leukocytes, Mononuclear , MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , MicroRNAs/blood , MicroRNAs/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Aged , Inflammation/genetics , Inflammation/blood , Inflammation/metabolism , Case-Control Studies
18.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38747389

ABSTRACT

Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.


Subject(s)
Introduced Species , Virome , Animals , China , Ixodidae/virology , Female , Climate Change , Male , Climate
19.
Arch Dermatol Res ; 316(6): 270, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796609

ABSTRACT

Hidradenitis suppurativa (HS) is an inflammatory follicular dermatological condition that typically affects the intertriginous and anogenital regions of the apocrine gland-bearing skin. The management of this chronic and recurring disease necessitates a combination of lifestyle changes, medication, and surgical approaches to achieve the best possible outcomes. While medical treatments are recommended for this multimodal disease, surgical therapy, which is the gold standard of treatment for HS, has proven to be the most effective treatment because it provides long-lasting local disease control, reduces the recurrence of lesions, and ensures complete healing of lesions. In the last decade, there has been exponential growth in research into various surgical techniques and reconstructive care, enabling patients to have more surgical options. There is a wide range of surgical management procedures available, such as incision and drainage, deroofing, excisional surgery, carbon dioxide laser therapy, and skin tissue-sparing excision with electrosurgical peeling. Among these surgical procedures, wide surgical excision is the best option since it can eradicate all the affected lesions. Meanwhile, the preferred approach to reconstruction at various anatomical locations remains debatable. Here, we review a variety of surgical treatments and reconstructive techniques for HS, particularly various flap techniques for the axillary, gluteal, and inframammary regions.


Subject(s)
Hidradenitis Suppurativa , Plastic Surgery Procedures , Humans , Axilla/surgery , Buttocks/surgery , Dermatologic Surgical Procedures/methods , Hidradenitis Suppurativa/surgery , Plastic Surgery Procedures/methods , Surgical Flaps/transplantation , Treatment Outcome
20.
Fitoterapia ; 176: 105998, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734212

ABSTRACT

Three Stemona alkaloids named stemotuberines A-C (1-3) with unique C17N frameworks, presumably formed by elimination of the C-11-C-15 lactone ring of the stichoneurine skeleton, were isolated from the roots of Stemona tuberosa. Their structures were elucidated by spectroscopic analysis, X-ray diffraction, and computational methods. Compounds 2 and 3 showed inhibition (IC50 values of 37.1 and 23.2 µM, respectively) against LPS-induced nitric oxide production in RAW 264.7 cells. In addition, concern was expressed about the reported plant origin (S. sessilifolia) of the recently described alkaloids tuberostemonols O-R (4-7), which should be S. tuberosa. NMR calculations indicated structural misassignment of these compounds except for 6. Isolation of tuberostemonol P (5) from our material of S. tuberosa allowed for a close examination of the spectroscopic data leading to the revised structure 5a. Tuberostemonol R (7) was found to have identical 1H and 13C NMR data to the well-known alkaloid croomine, and therefore its structure including relative stereochemistry must be revised as 7a.


Subject(s)
Alkaloids , Nitric Oxide , Phytochemicals , Plant Roots , Stemonaceae , Molecular Structure , Stemonaceae/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Alkaloids/chemistry , Mice , Plant Roots/chemistry , RAW 264.7 Cells , Animals , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...