Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(46): 16860-16865, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33179670

ABSTRACT

The well-studied star compound, CH3NH3PbI3, has attracted plenty of attention because of its remarkable optical and electrical properties. Consequently, new switching multifunctional hybrid compounds can be widely used in many fields such as solar cells, light-emitting diodes, optical data storage and so on. Therefore, switching multifunctional hybrid compounds with dielectric and semiconducting properties simultaneously will also find roles in the next generation of optoelectronic coupling materials. In fact, discovering an effective method to synthesize (multi)functional hybrid materials remains a pressing challenge. Thanks to the "quasi-spherical theory" proposed by Xiong et al., we used 7-azabicyclo[2.2.1]heptane as the quasi-spherical cation to construct molecule-based crystalline materials that exhibit responsive properties. Then, we tried to exploit the knowledge of crystal engineering and coordination chemistry to explain (multi)functional molecular materials. A layered organic-inorganic hybrid compound, (C6H12N)2Pb(NO3)4 (1), was grown and its dielectric switching property and semiconducting behaviour were investigated. Insights from differential scanning calorimetry measurements, variable-temperature X-ray structural studies, and dielectric spectroscopy revealed the origin of the phase transition, which is related to the motion of the organic ammonium and inorganic framework in solid-state crystals. Furthermore, 1 is also a wide bandgap semiconductor with an optical bandgap of 3.53 eV. The realization of switching and semiconducting properties simultaneously in layered Pb-based perovskites has a great significance toward research into hybrid compounds and the development of dielectric-optoelectronic integrated materials.

2.
J Am Chem Soc ; 142(21): 9634-9641, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32319771

ABSTRACT

Piezoelectric materials are technologically important, and the most used are perovskite ferroelectrics. In recent years, more and more emerging areas have put forward new requirements for piezoelectric materials, such as light weight, low acoustic impedance, good flexibility, and biocompatibility. In this context, hybrid organic-inorganic perovskite ferroelectrics have emerged as promising supplements, because they combine attractive features of inorganic and organic materials. Among them, hybrid double-metal perovskites have recently been found to exhibit excellent ferroelectricity. However, their potential as piezoelectric materials has not been exploited. Here, we describe large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectrics (RM3HQ)2RbLa(NO3)6 and (RM3HQ)2NH4La(NO3)6 (RM3HQ = R-N-methyl-3-hydroxylquinuclidinium). They are simultaneously ferroelectric and ferroelastic crystals, with the R3 ferroelectric phase and P213 paraelectric phase. We found that ferroelectric polar microdomains and paraelectric nonpolar regions coexist in a wide temperature range through variable-temperature piezoresponse force microscopy images. The two-phase coexistence reveals low energy barriers of transitions between the two phases and between the polar microdomains with different polarization directions. These lead to the easy polarization rotation of the polar microdomains upon applying a stress and, accordingly, the large piezoelectric response up to 106 pC N-1 for (RM3HQ)2RbLa(NO3)6. This finding represents a significant step toward novel applications of piezoelectric materials based on lead-free hybrid perovskites.

3.
Angew Chem Int Ed Engl ; 59(1): 167-171, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31670443

ABSTRACT

Substitution of A-site and/or X-site ions of ABX3 -type perovskites with organic groups can give rise to hybrid perovskites, many of which display intriguing properties beyond their parent compounds. However, this method cannot be extended effectively to hybrid antiperovskites. Now, the design of hybrid antiperovskites under the guidance of the concept of Goldschmidt's tolerance factor is presented. Spherical anions were chosen for the A and B sites and spherical organic cations for the X site, and seven hybrid antiperovskites were obtained, including (F3 (H2 O)x )(AlF6 )(H2 dabco)3 , ((Co(CN)6 )(H2 O)5 )(MF6 )(H2 dabco)3 (M=Al3+ , Cr3+ , or In3+ ), (Co(CN)6 )(MF6 )(H2 pip)3 (M=Al3+ or Cr3+ ), and (SbI6 )(AlF6 )(H2 dabco)3 . These new structures reveal that all ions at A, B, and X sites of inorganic antiperovskites can be replaced by molecular ions to form hybrid antiperovskites. This work will lead to the synthesis of a large family of hybrid antiperovskites.

4.
J Am Chem Soc ; 142(1): 545-551, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31825221

ABSTRACT

As a major branch of hybrid perovskites, two-dimensional (2D) hybrid double perovskites are expected to be ideal systems for exploring novel ferroelectric properties, because they can accommodate a variety of organic cations and allow diverse combinations of different metal elements. However, no 2D hybrid double perovskite ferroelectric has been reported since the discovery of halide double perovskites in the 1930s. Based on trivalent rare-earth ions and chiral organic cations, we have designed a new family of 2D rare-earth double perovskite ferroelectrics, A4MIMIII(NO3)8, where A is the organic cation, MI is the alkaline metal or ammonium ion, and MIII is the rare-earth ion. This is the first time that ferroelectricity is realized in 2D hybrid double perovskite systems. These ferroelectrics have achieved high-temperature ferroelectricity and photoluminescent properties. By varying the rare-earth ion, variable photoluminescent properties can be achieved. The results reveal that the 2D rare-earth double perovskite systems provide a promising platform for achieving multifunctional ferroelectricity.

5.
Asian Pac J Cancer Prev ; 16(8): 3159-62, 2015.
Article in English | MEDLINE | ID: mdl-25921114

ABSTRACT

PURPOSE: This systematic analysis was conducted to evaluate the efficacy and safety of nedaplatin based salvage chemotherapy for treatment of patients with advanced cervical cancer. METHODS: Clinical studies evaluating the efficacy and safety of nedaplatin based regimens on response and safety for patients with cervical cancer were identified using a predefined search strategy. Pooled response rates (RRs) were calculated. RESULTS: For nedaplatin based regimens, 5 clinical studies including 264 patients with advanced cervical cancer were considered eligible for inclusion. The analysis showed that, in all patients, pooled RR was 74.6% (197/264). Major adverse effects were leukopenia, thrombocytopenia and nausea/vomiting. No treatment related death occurred with nedaplatin based treatment. CONCLUSION: This systematic analysis suggests that nedaplatin based regimens are associated with good activity with acceptable tolerability in treating patients with advanced cervical cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Organoplatinum Compounds/therapeutic use , Salvage Therapy , Uterine Cervical Neoplasms/drug therapy , Clinical Trials as Topic , Female , Humans , Meta-Analysis as Topic , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...