Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 183: 285-294, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33894259

ABSTRACT

The oxidative depolymerization of alkali lignin (AL) in 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) system without additional catalyst was investigated under mild conditions (initial O2 pressure of 1.5 MPa, 80 °C-100 °C). Compared with other ionic liquids (ILs), the cooperation of imidazolium cation and acetate anion successfully enhanced AL conversion. Among the investigated imidazolium acetate ILs with ethyl- to octyl-side chains, [C2C1im]OAc presented the best catalytic capacity for AL oxidative depolymerization. Adding an appropriate amount of water to [C2C1im]OAc can further improve the reaction efficiency. In the [C2C1im]OAc system with the addition of 0.10-0.25 mL of water, approximately 77 wt% AL was depolymerized into small molecule soluble products at 100 °C for 2 h. The extracted oil was composed mainly of phenolic derived compounds. With the use of the [C2C1im]OAc-based system, the specific inter-unit linkages of lignin were broken down, and residual lignin with low molecular weight and narrow polydispersity index (1.88-1.96) was obtained. Compared with that in AL conversion with fresh [C2C1im]OAc, only a minimal decrease (~3.2%) was observed with the recovered IL until the fifth cycle. These findings revealed that [C2C1im]OAc-based system is a simple and efficient catalytic system for lignin oxidative depolymerization.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Catalysis , Lignin/chemistry , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...