Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Transl Med ; 22(1): 94, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263182

ABSTRACT

BACKGROUND: Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS: We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS: With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS: Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.


Subject(s)
Asthma , COVID-19 , Hypersensitivity , Humans , CD8-Positive T-Lymphocytes , Critical Illness
2.
J Asian Nat Prod Res ; 26(2): 177-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38166573

ABSTRACT

Two pairs of new dihydrophenanthro[b]furan enantiomers blephebibnols G-H (1-2), one new dihydrophenanthro[b]furan derivative blephebibnol I (3), along with four known analogues (4-7), were isolated from the tubers of Bletilla striata. Their structures including the absolute configurations were determined by the combination of spectroscopic data analysis, ECD and NMR calculations. Compounds 1a, 1b, and 2b showed inhibition of NO production in LPS-stimulated BV-2 cells, with IC50 values ranging from 4.11 to 14.65 µM. Further mechanistic study revealed that 1a suppressed the phosphorylation of p65 subunit to regulate the NF-κB signaling pathway. In addition, some compounds displayed selective cytotoxic activities against HCT-116, HepG2, A549, or HGC27 cancer cell lines with IC50 values ranging from 0.1 to 8.23 µM.


Subject(s)
Orchidaceae , Signal Transduction , Molecular Structure , Magnetic Resonance Spectroscopy , NF-kappa B , Orchidaceae/chemistry
3.
Article in English | MEDLINE | ID: mdl-36285158

ABSTRACT

Purpose: This study focused on determining the anticancer effect of paeoniflorin and geniposide mixture (PFGS) combined with sorafenib (Sor) in hepatocellular carcinoma (HCC) and, in particular, whether PFGS increases the antitumor effect of Sor by modulating the NF-κB/HIF-2α/SerpinB3 pathway. Methods: The H22 hepatoma tumor-bearing mouse model was treated with PFGS, Sor, and a combination of the two drugs for 12 days. The effects of PFGS combined with Sor on tumor growth and apoptosis and the expression of NF-κB, HIF-2α, and SerpinB3 in tumor tissue were assessed. In addition, Sor-resistant hepatoma cells were treated with PFGS, Sor, and the combination of the two drugs in vitro. The effects of PFGS combined with Sor on cell proliferation and invasion and the protein expression of NF-κB p65, HIF-2α, and SerpinB3 were investigated. Results: PFGS combined with Sor treatment synergistically inhibited tumor growth in HCC tumor-bearing mice. Immunostaining showed that PFGS combined with Sor treatment significantly decreased the expression of Ki-67 and obviously induced apoptosis in the tumor compared with a single treatment. Similarly, PFGS combined with Sor treatment significantly downregulated the expression of NF-κB, HIF-2α, and SerpinB3 in the tumor compared with a single treatment. Additionally, PFGS combined with Sor markedly inhibited cell proliferation and invasion and activation of the NF-κB/HIF-2α/SerpinB3 pathway in Sor-resistant hepatoma cells compared with a single treatment. Conclusion: Our study demonstrated that PFGS synergistically increased the antiliver cancer effects of Sor by lowering activation of the NF-κB/HIF-2α/SerpinB3 pathway. These findings provided a scientific foundation for clinical studies using PFGS and Sor to treat liver cancer.

4.
Plant Dis ; 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35801903

ABSTRACT

Cymbidium sinense (Jackson ex Andr.) Willd is a perennial terrestrial plant in the orchid family mainly distributed in China, Japan, India and Southeast Asia that occupies a strong position in the flower market due to its bright green leaves and fragrant flowers (Zhang et al. 2013). Cymbidium sinense is not only valued by people for its ornamental and economic value, but its roots have antiasthmatic medicinal properties (Ke et al. 2004). In August 2020, about 15% stem rot on two-year old C. sinense with varying severity was observed in five nursery gardens located in Enshi city (N 30° 16', E 109° 29'), Hubei province, China. Typical symptoms of C. sinense included roots and inner part of the pseudobulbs changing from white to brown and rotting. Leaves became brown and withered from bottom to top, and there was an obvious blight yellow halo at the junction of diseased and healthy tissue, which eventually caused the whole plant to wilt and die (Fig. 1d). To isolate the pathogen, a total of 15 leaf tissues from the disease-health junction (3 × 3 mm) from 5 individual plants (3 leaves/plant) with symptoms were surface sterilized with 75% ethanol for 30 s and 2% sodium hypochlorite (NaOCl) for 3 min. The sterilized tissue was rinsed three times with sterilized water, and then placed on potato dextrose agar (PDA) for incubation at 28°C in the dark for 5 days. Isolated colonies were subcultured by a hyphal tip protocol. Thirteen fungal isolates were obtained. Through preliminary pathogenicity tests, we found that ten isolates induced leaf blight. These ten isolates with pathogenicity showed similar morphological characteristics, with initial white-flocculent aerial mycelium that secreted a lavender pigment and produced colonies with an irregular edge after 3 days on PDA. The ten strains were cultured on PDA plates at 28℃ for 5 and 15 days to observe colony and conidial characteristics. The ten strains were identified as Fusarium based on morphological characteristics (Leslie and Summerell 2006). Strain ML0303 was selected for further identification. Macroconidia were falciform, hyaline, slightly pointed at both ends with two to four septa, 24.0 ± 5.6 µm × 4.7 ± 0.8 µm (n = 50). Microconidia were hyaline, oval, globose, with zero to one septum, 5.5 ± 1.3 µm × 2.2 ± 0.5 µm (n = 50) (Fig. 1c). Total genomic DNA of strain ML0303 was extracted with a CTAB protocol (Stenglein and Balatti 2006). The translation elongation factor (EF-1α), RNA polymerase II second largest subunit (RPB2) and ß-tubulin (Tub2) genes were amplified respectively using primer pairs EF1/EF2, RPB2-5F2/RPB2-7cR and T1/T22 respectively (O'Donnell. et al. 2010, O'Donnell. et al. 1997). The EF-1α, RPB2 and Tub2 (accession numbers-MW719874, OL614838, OL689398, respectively) gene sequences were submitted to GenBank. EF-1α, RPB2 and Tub2 sequences of ML0303 showed 99.5% - 100% identity respectively with Fusarium oxysporum in the Genbank and FUSARIUM-ID databases. The multilocus sequence data was used to infer a phylogenetic tree via a Neighbor-joining (NJ), Maximum-likelihood (ML) and Maximum-Parsimony(MP) together with reference sequences from GenBank. The topology of the three trees was similar; only the NJ tree is presented here. Strain ML0303 and F. oxysporum formed a clade supported with high values (NJ/ML/MP: 96,95,97). The results indicated that the fungus was F. oxysporum based on the phylogenetic analysis and BLASTn queries. For pathogenicity tests, conidia of strain ML0303 were collected by rinsing PDA plates. Two-year-old C. sinense grown in plastic pots filled with sterilized autoclaved sandy loam soil were used for the tests. Three pots (two plants/pot) were included in each treatment. Spore suspensions (106spores/ml) of strain ML0303 were used to irrigate the stem-zone of the plants, and sterile water was used as control. The two treatments were placed in a greenhouse and incubated at 28±2℃ with a 14-hour light/10-hour dark cycle. The experiment was repeated twice. After three weeks, stem rot symptoms were observed on C. sinense inoculated with ML0303, that were the as same as observed in the nursery (Fig. 1e-h). No symptoms were observed on the negative control. Fusarium oxysporum was re-isolated from the infected plants to fulfill Koch's postulates. Partial EF-1α and RPB2 gene sequences were used for molecular identification. Members of the FOSC are notorious for causing many diseases, which includes stem rot of Sulcorebutia heliosa and root rot of Torreya grandis (Garibaldi et al. 2020; Zhang et al. 2016). To our knowledge, this is the first report of stem rot by F. oxysporum on C. sinense in China. The finding of this pathogen provides a clear target for stem rot control.

5.
Front Microbiol ; 13: 855399, 2022.
Article in English | MEDLINE | ID: mdl-35495715

ABSTRACT

Fusarium oxysporum KB-3 had been reported as a mycorrhizal fungus of Bletilla striata, which can promote the seed germination and vegetative growth. Endohyphal bacteria were demonstrated in the hyphae of the KB-3 by 16S rDNA PCR amplification and SYTO-9 fluorescent nucleic acid staining. A strain Klebsiella aerogenes KE-1 was isolated and identified based on the multilocus sequence analysis. The endohyphal bacterium was successfully removed from the wild strain KB-3 (KB-3-), and GFP-labeled KE-1 was also transferred to the cured strain KB-3- (KB-3+). The production of indole-3-acetic acid (IAA) in the culturing broths of strains of KE-1, KB-3, KB-3-, and KB-3+ was examined by HPLC. Their IAA productions were estimated using Salkowski colorimetric technique. The highest concentrations of IAA were 76.9 (at 48 h after inoculation), 31.4, 9.6, and 19.4 µg/ml (at 60 h after inoculation), respectively. Similarly, the three fungal cultural broths exhibited plant promoting abilities on the tomato root and stem growth. The results indicated that the ability of mycorrhizal Fusarium strain KB-3 to promote plant growth was enhanced because its endohyphal bacterium, Klebsiella aerogenes KE-1, produced a certain amount of IAA.

6.
Eur Radiol ; 32(8): 5179-5188, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35175380

ABSTRACT

OBJECTIVES: To explore downstream management and outcomes of machine learning (ML)-based CT derived fractional flow reserve (FFRCT) strategy compared with an anatomical coronary computed tomography angiography (CCTA) alone assessment in participants with intermediate coronary artery stenosis. METHODS: In this prospective study conducted from April 2018 to March 2019, participants were assigned to either the CCTA or FFRCT group. The primary endpoint was the rate of invasive coronary angiography (ICA) that demonstrated non-obstructive disease at 90 days. Secondary endpoints included coronary revascularization and major adverse cardiovascular events (MACE) at 1-year follow-up. RESULTS: In total, 567 participants were allocated to the CCTA group and 566 to the FFRCT group. At 90 days, the rate of ICA without obstructive disease was higher in the CCTA group (33.3%, 39/117) than that (19.8%, 19/96) in the FFRCT group (risk difference [RD] = 13.5%, 95% confidence interval [CI]: 8.4%, 18.6%; p = 0.03). The ICA referral rate was higher in the CCTA group (27.5%, 156/567) than in the FFRCT group (20.3%, 115/566) (RD = 7.2%, 95% CI: 2.3%, 12.1%; p = 0.003). The revascularization-to-ICA ratio was lower in the CCTA group than that in the FFRCT group (RD = 19.8%, 95% CI: 14.1%, 25.5%, p = 0.002). MACE was more common in the CCTA group than that in the FFRCT group at 1 year (HR: 1.73; 95% CI: 1.01, 2.95; p = 0.04). CONCLUSION: In patients with intermediate stenosis, the FFRCT strategy appears to be associated with a lower rate of referral for ICA, ICA without obstructive disease, and 1-year MACE when compared to the anatomical CCTA alone strategy. KEY POINTS: • In stable patients with intermediate stenosis, ML-based FFRCT strategy was associated with a lower referral ICA rate, a lower normalcy rate of ICA, and higher revascularization-to-ICA ratio than the CCTA strategy. • Compared with the CCTA strategy, ML-based FFRCTshows superior outcome prediction value which appears to be associated with a lower rate of 1-year MACE. • ML-based FFRCT strategy as a non-invasive "one-stop-shop" modality may be the potential to change diagnostic workflows in patients with suspected coronary artery disease.


Subject(s)
Computed Tomography Angiography , Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Humans , Machine Learning , Predictive Value of Tests , Prospective Studies , Tomography, X-Ray Computed
7.
Cell Mol Biol Lett ; 26(1): 37, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399682

ABSTRACT

BACKGROUND: Iron overload can promote the development of osteoporosis by inducing apoptosis in osteoblasts. However, the mechanism by which miRNAs regulate apoptosis in osteoblasts under iron overload has not been elucidated. METHOD: The miRNA expression profile in MC3T3-E1 cells under iron overload was detected by next generation sequencing. qRT-PCR was used to determine the expression of miR-3074-5p in MC3T3-E1 cells under iron overload. The proliferation of MC3T3-E1 cells was tested using CCK-8 assays, and apoptosis was measured using flow cytometry. The miRanda and TargetScan databases were used to predict the target genes of miR-3074-5p. Interaction between miR-3074-5p and the potential target gene was validated by qRT-PCR, luciferase reporter assay and western blotting. RESULTS: We found that iron overload decreased the cell viability and induced apoptosis of MC3T3-E1 cells. The results of next generation sequencing analysis showed that miR-3074-5p expression was significantly increased in MC3T3-E1 cells under iron overload conditions, which was confirmed by further experiments. The inhibition of miR-3074-5p attenuated the apoptosis of iron-overloaded MC3T3-E1 cells. Furthermore, the expression of Smad4 was decreased and was inversely correlated with miR-3074-5p expression, and overexpression of Smad4 partially reversed the viability inhibition of iron-overloaded MC3T3-E1 cells by relieving the suppression of ERK, AKT, and Stat3 phosphorylation, suggesting its regulatory role in the viability inhibition of iron-overloaded MC3T3-E1 cells. The luciferase reporter assay results showed that Smad4 was the target gene of miR-3074-5p. CONCLUSION: miR-3074-5p functions as an apoptosis promoter in iron-overloaded MC3T3-E1 cells by directly targeting Smad4.


Subject(s)
Iron Overload/metabolism , MicroRNAs/metabolism , Osteoblasts/metabolism , Animals , Apoptosis/physiology , Cell Line , Iron Overload/genetics , Iron Overload/pathology , Mice , MicroRNAs/genetics , Osteoblasts/pathology , Signal Transduction , Smad4 Protein/metabolism
8.
Phytochemistry ; 182: 112609, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33326906

ABSTRACT

Thirteen undescribed phenanthrene and bibenzyl derivatives, named blestanols A-M, including one pair of biphenanthrene enantiomers, two bis 9,10-dihydrophenanthrene ethers, five pairs of 9,10-dihydrophenanthrene/bibenzyl atropisomers, one racemic 9,10-dihydrophenanthrene/bibenzyl dimer, one 9,10-dihydrophenanthrenebibenzyl ether, two pairs of bibenzyl derivatives, and one stilbene, together with 12 known analogues were isolated from the tubers of Bletilla striata. The structures were elucidated via spectroscopic data analysis. 15 compounds were purified to yield enantiomers (a, b) via chiral-phase HPLC, and their configurations were determined by optical rotation values and the comparison of the experimental and calculated electronic circular dichroism (ECD) curves. Blestanols K-L possessed a cycloheptene moiety, which is rarely observed in bibenzyl derivatives. A putative biosynthetic pathway for the identified components is deduced. Among these compounds, 14 compounds showed inhibition of NO production, with IC50 values ranging from 5.0 to 19.0 µM. Eight compounds displayed selective cytotoxic activities against HCT-116, HepG2, BGC-823, A549 or U251 cancer cell lines, with IC50 values ranging from 1.4 to 8.3 µM. In addition, their structure-activity relationships are discussed briefly.


Subject(s)
Bibenzyls , Orchidaceae , Phenanthrenes , Bibenzyls/pharmacology , Molecular Structure , Phenanthrenes/pharmacology , Stereoisomerism
9.
Acta Pharmacol Sin ; 42(7): 1139-1149, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33318625

ABSTRACT

This study aimed to investigate the inhibitory effect of EM-2, a natural active monomer purified from Elephantopusmollis H.B.K., on the proliferation of human hepatocellular carcinoma cells and the molecular mechanism involved. The results from the MTT assay revealed that EM-2 significantly inhibited the proliferation of human hepatocellular carcinoma (HCC) cells in a dose-dependent manner but exhibited less cytotoxicity to the normal liver epithelial cell line LO2. EdU staining and colony formation assays further confirmed the inhibitory effect of EM-2 on the proliferation of Huh-7 hepatocellular carcinoma cells. According to the RNA sequencing and KEGG enrichment analysis results, EM-2 markedly activated the MAPK pathway in Huh-7 cells, and the results of Western blotting further indicated that EM-2 could activate the ERK and JNK pathways. Meanwhile, EM-2 induced apoptosis in a dose-dependent manner and G2/M phase arrest in Huh-7 cells, which could be partially reversed when treated with SP600125, a JNK inhibitor. Further study indicated that EM-2 induced endoplasmic reticulum stress and blocked autophagic flux in Huh-7 cells by inhibiting autophagy-induced lysosome maturation. Inhibition of autophagy by bafilomycin A1 could reduce cell viability and increase the sensitivity of Huh-7 cells to EM-2. In conclusion, our findings revealed that EM-2 not only promoted G2/M phase arrest and activated ER stress but also induced apoptosis by activating the JNK pathway and blocked autophagic flux by inhibiting autolysosome maturation in Huh-7 hepatocellular carcinoma cells. Therefore, EM-2 is a potential therapeutic drug with promising antitumor effects against hepatocellular carcinoma and fewer side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Lactones/pharmacology , Liver Neoplasms/drug therapy , Sesquiterpenes/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Lysosomes/drug effects , MAP Kinase Signaling System/drug effects
10.
Article in English | MEDLINE | ID: mdl-33184644

ABSTRACT

AIMS: This study was aimed at investigating whether a machine learning (ML)-based coronary computed tomographic angiography (CCTA) derived fractional flow reserve (CT-FFR) SYNTAX score (SS), 'Functional SYNTAX score' (FSSCTA), would predict clinical outcome in patients with three-vessel coronary artery disease (CAD). METHODS AND RESULTS: The SS based on CCTA (SSCTA) and ICA (SSICA) were retrospectively collected in 227 consecutive patients with three-vessel CAD. FSSCTA was calculated by combining the anatomical data with functional data derived from a ML-based CT-FFR assessment. The ability of each score system to predict major adverse cardiac events (MACE) was compared. The difference between revascularization strategies directed by the anatomical SS and FSSCTA was also assessed. Two hundred and twenty-seven patients were divided into two groups according to the SSCTA cut-off value of 22. After determining FSSCTA for each patient, 22.9% of patients (52/227) were reclassified to a low-risk group (FSSCTA ≤ 22). In the low- vs. intermediate-to-high (>22) FSSCTA group, MACE occurred in 3.2% (4/125) vs. 34.3% (35/102), respectively (P < 0.001). The independent predictors of MACE were FSSCTA (OR = 1.21, P = 0.001) and diabetes (OR = 2.35, P = 0.048). FSSCTA demonstrated a better predictive accuracy for MACE compared with SSCTA (AUC: 0.81 vs. 0.75, P = 0.01) and SSICA (0.81 vs. 0.75, P < 0.001). After FSSCTA was revealed, 52 patients initially referred for CABG based on SSCTA would have been changed to PCI. CONCLUSION: Recalculating SS by incorporating lesion-specific ischaemia as determined by ML-based CT-FFR is a better predictor of MACE in patients with three-vessel CAD. Additionally, the use of FSSCTA may alter selected revascularization strategies in these patients.

11.
Eur Radiol ; 30(11): 5841-5851, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32462444

ABSTRACT

OBJECTIVES: This study investigated the impact of machine learning (ML)-based fractional flow reserve derived from computed tomography (FFRCT) compared to invasive coronary angiography (ICA) for therapeutic decision-making and patient outcome in patients with suspected coronary artery disease (CAD). METHODS: One thousand one hundred twenty-one consecutive patients with stable chest pain who underwent coronary computed tomography angiography (CCTA) followed ICA within 90 days between January 2007 and December 2016 were included in this retrospective study. Medical records were reviewed for the endpoint of major adverse cardiac events (MACEs). FFRCT values were calculated using an artificial intelligence (AI) ML platform. Disagreements between hemodynamic significant stenosis via FFRCT and severe stenosis on qualitative CCTA and ICA were also evaluated. RESULTS: After FFRCT results were revealed, a change in the proposed treatment regimen chosen based on ICA results was seen in 167 patients (14.9%). Over a median follow-up time of 26 months (4-48 months), FFRCT ≤ 0.80 was associated with MACE (HR, 6.84 (95% CI, 3.57 to 13.11); p < 0.001), with superior prognostic value compared to severe stenosis on ICA (HR, 1.84 (95% CI, 1.24 to 2.73), p = 0.002) and CCTA (HR, 1.47 (95% CI, 1.01 to 2.14, p = 0.045). Reserving ICA and revascularization for vessels with positive FFRCT could have reduced the rate of ICA by 54.5% and lead to 4.4% fewer percutaneous interventions. CONCLUSIONS: This study indicated ML-based FFRCT had superior prognostic value when compared to severe anatomic stenosis on CCTA and adding FFRCT may direct therapeutic decision-making with the potential to improve efficiency of ICA. KEY POINTS: • ML-based FFRCT shows superior outcome prediction value when compared to severe anatomic stenosis on CCTA. • FFRCT noninvasively informs therapeutic decision-making with potential to change diagnostic workflows and enhance efficiencies in patients with suspected CAD. • Reserving ICA and revascularization for vessels with positive FFRCT may reduce the normalcy rate of ICA and improve its efficiency.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnosis , Decision Making , Disease Management , Fractional Flow Reserve, Myocardial/physiology , Machine Learning , Artificial Intelligence , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index
12.
Front Genet ; 11: 9, 2020.
Article in English | MEDLINE | ID: mdl-32158464

ABSTRACT

Circular RNA (circRNA), a type of RNA that is widely expressed in mammalian cells, is considered to be essential in tumorigenesis. CircRNA can regulate target gene expression by interacting with the corresponding microRNA (miRNA). Our preliminary results showed that the expression levels of 1,817 circRNAs were significantly different in colon cancer tissue compared with paracancerous tissue, of which 1,236 were upregulated and 581 were downregulated. By using RT-PCR, we confirmed that the expression of hsa_circ_0007843, hsa_circ_0010575, hsa_circ_0007331, and hsa_circ_0001615 was significantly higher in colon cancer tissue than in normal colonic tissue; however, the expression levels of hsa_circ_0014879 and hsa_circRNA_401801 were not significantly different between normal and neoplastic colonic tissue. Among the circRNAs that were confirmed to be upregulated in colon cancer tissue, hsa_circ_0007843 was also found to be highly expressed in colon cancer SW480 cells. Overexpression of hsa_circ_0007843 promoted the invasion and migration of SW480 cells, whereas its downregulation suppressed their invasion and migration. Overexpression of hsa_circ_0007843 promoted tumor growth, whereas its downregulation inhibited tumor growth. We found that hsa_circ_0007843 interacted with miR-518c-5p and suppressed its expression, and miR-518c-5p interacted with matrix metallopeptidase 2 (MMP2) and promoted its expression and translation. Taken together, this study demonstrated that hsa_circ_0007843 acted as an miRNA sponge to regulate MMP2 expression by removing the inhibitory effect of miR-518c-5p on MMP2 gene translation, which further affected the invasive capability of SW480 cells.

13.
Zhen Ci Yan Jiu ; 45(1): 1-7, 2020 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-32144901

ABSTRACT

OBJECTIVE: To explore the mechanism of electroacupuncture (EA) in accelerating the aggregation of microglia and promoting the remyelination at the location of demyelination. METHODS: C57BL/6 mice were randomly divided into 4 groups: normal, control, model (LPC) and LPC+EA. The demyelination model was established by microinjection of Lysolecithin (LPC, 1 µL) into the left corpus callosum. EA (2 Hz/15 Hz, 2-4 mA) was applied to "Baihui"(GV20)and "Zhiyang"(GV9)for 30 min,once daily for 3 days, then, once every other day for 18 days. Immuno-fluorescence staining was used to observe the expression of myelin basic protein (MBP) and Axl tyrosine kinase receptor (Axl), Iba1 and numbers of Olig2-positive oligodendrocytes in the corpus callosum. Western blot was employed to detect the expression of MBP in the corpus callosum, and Oil Red O staining was used to observe changes of number of myelin pieces. RESULTS: Following modeling, the expression levels of MBP on day 5 and 10 after modeling were significantly decreased (P<0.05, P<0.01), Iba1 expression and Olig2-positive oligodendrocyte numbers on day 10 apparently increased (P<0.001, P<0.01). On day 21 after modeling, the levels of the above mentioned indexes returned to normal. After EA intervention, the levels of MBP expression on day 5 and 10, Axl, Iba1 protein expression and Olig2-positive oligodendrocyte numbers on day 5 were markedly increased (P<0.001,P<0.01,P<0.05), while Iba1 expression on day 10 was considerably decreased in comparison with the model group (P<0.01).Oil Red O staining showed that on day 5 after modeling, the number of red lipid droplets were obviously increased in the corpus callosum tissue on the injection side, and apparently reduced in the EA group, suggesting a clearance of the accumulated myelin fragments by EA. CONCLUSION: EA intervention may reduce myelin debris and promote the aggregation of microglial cells and oligodendrocytes to the injured site, accelerate the myelin regeneration and up-regulate the expression of MBP and Axl of corpus callosum in demyelination mice.


Subject(s)
Demyelinating Diseases , Electroacupuncture , Animals , Corpus Callosum , Mice , Mice, Inbred C57BL , Myelin Sheath
14.
J Cell Physiol ; 234(3): 2618-2630, 2019 03.
Article in English | MEDLINE | ID: mdl-30191969

ABSTRACT

Paris polyphylla var. yunnanensis, named Chong Lou, is considered an antitumor substance. In this study, we investigated the effect of PP-22, a monomer purified from P. polyphylla var. yunnanensis, on the nasopharyngeal carcinoma cell line CNE-2 in vitro. The results showed that PP-22 could inhibit the proliferation of CNE-2 cells via the induction of apoptosis, with evidence of the characteristic morphological changes in the apoptosis in the nucleus and an increase in Annexin V-positive cells. In addition, we found that PP-22 could activate the p38 mitogen-activated protein kinase (MAPK) pathway and that this activation was reversed by SB203580, a specific inhibitor of the p38 MAPK pathway. In contrast, PP-22 promoted apoptosis via an intrinsic pathway, including the endoplasmic reticulum stress pathway, in a caspase-dependent manner. A further study showed that PP-22 also induced apoptosis by downregulating the signal transducers and activators of transcription 3 (STAT3) pathway, and the inhibitory effect was also confirmed by STAT3 small interfering RNA. In addition, PP-22 could promote autophagy by inhibiting the extracellular regulated protein kinases (ERK) pathway. And autophagy plays a protective role against apoptosis. Together, these data show that PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma CNE-2 cell line.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Saponins/pharmacology , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mitogen-Activated Protein Kinases/metabolism , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
15.
J Cell Physiol ; 233(9): 6779-6789, 2018 09.
Article in English | MEDLINE | ID: mdl-29244196

ABSTRACT

This study aimed to investigate the cell cycle arrest and autophagy induced by iron overload in MC3T3-E1 cells. MC3T3-E1 cells were cultured in different concentrations of ferric ammonium citrate (FAC), and Perls' Prussian blue reaction was used to detect the iron levels of the cells. CCK-8 assays were used to detect the growth of MC3T3-E1. The level of reactive oxygen species (ROS) within cells was investigated with DCFH-DA. PI staining was used to analyze the cell cycle distribution of MC3T3-E1 cells. Finally, the expression levels of cell cycle related proteins, autophagy related proteins, AKT, p38 MAPK, Stat3, and their downstream proteins were detected with Western blot assays. The results showed that the iron levels of MC3T3-E1 cells increased with increasing concentrations of FAC. High levels of ferric ion inhibited proliferation of MC3T3-E1 cells and increased their ROS levels. Additionally, iron overload induced G1arrest in MC3T3-E1 cells and down-regulated the expression of Cyclin D1 , Cyclin D3 , CDK2, CDK4 and CDK6, but up-regulated p27 Kip1. In addition, the expression levels of Beclin-1 and LC3 II increased, but that of p62 decreased. Further experiments showed that the phosphorylation of AKT and its downstream proteins p-GSK-3ß(Ser9) and p-mTOR (Ser2448) were decreased. The levels of p-p38 and p53 were up-regulated while those of cdc25A and p-ERK 1/2 were down-regulated. Phosphorylation of Stat3 and its downstream proteins was all decreased. These results show that iron overload generates ROS, blocks the PI3K/AKT and Jak/Stat3 signal pathways, and activates p38 MAPK, subsequently inducing G1 arrest and autophagy in MC3T3-E1 cells.


Subject(s)
Autophagy/genetics , Cell Cycle Checkpoints/genetics , G1 Phase/genetics , Iron Overload/genetics , Osteoblasts/physiology , Animals , Beclin-1/genetics , Cell Line , Cell Proliferation/genetics , Down-Regulation/genetics , Glycogen Synthase Kinase 3 beta/genetics , Iron Overload/complications , Iron Overload/metabolism , Mice , Osteoblasts/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/genetics
16.
Tumour Biol ; 37(11): 14863-14872, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27644244

ABSTRACT

Recent studies have shown that the aqueous, ethanolic extracts and a monomer compound of Paris polyphylla exhibit anticancer activity toward several types of cancer cell lines, but the anticancer activity of (3ß,17α,25R)-spirost-5-ene-3,17-diol 3-O-α-L-rhamnopyranosyl-(1 â†’ 2)-ß-D-glucopyranoside, a monomer isolated from P. polyphylla (PP), named PP-22, has not been reported previously. In this study, we investigated the effect of PP-22 on human tongue squamous cell carcinoma SCC-15 cells in vitro. MTT assays showed that PP-22 inhibited the growth of SCC-15 cells and had no obvious inhibitory effects on human liver L02 cells. Flow cytometry assays showed that the percentages of apoptotic cells were increased. In addition, cleaved caspase-8, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) could be detected by Western blotting. Flow cytometry also showed that PP-22 triggered S and G2/M phases arrest in SCC-15 cells, and on the other hand, the expression of cyclin A, cyclin E2, cyclin B1, phospho-cell division cycle2 (p-cdc2)(Tyr15), p-Wee1, Myt1, and p53 was upregulated. Moreover, p-p38 levels increased, p-extracellular signal-regulated kinase (ERK) levels decreased, and cdc25B expression was inhibited. Furthermore, the p38/mitogen-activated protein kinase (MAPK) inhibitor SB203580 reversed the increase of the expression level of p38, p-cdc2 (Tyr15), cleaved caspase 3, cleaved PARP, p-p53, and p53 and reversed the decrease in cdc25B expression. In conclusion, these results demonstrated that PP-22 activated p38, inhibited cdc25B, increased p-cdc2 (Tyr15), and triggered S and G2/M phase arrest, as well as activated p53 through the p38-p53 pathway, inhibited the MAPK/ERK pathway, activated the caspase 8/caspase 3 pathway, and triggered the extrinsic apoptotic pathway in SCC-15 cells.


Subject(s)
Caspase 3/metabolism , Caspase 8/metabolism , Cyclin-Dependent Kinases/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Saponins/pharmacology , cdc25 Phosphatases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , CDC2 Protein Kinase , Carcinoma, Squamous Cell/drug therapy , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin A1/biosynthesis , Cyclin B1/biosynthesis , Cyclins/biosynthesis , DNA-Binding Proteins/biosynthesis , Humans , Imidazoles/pharmacology , Melanthiaceae/metabolism , Nuclear Proteins , Plant Extracts/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein-Tyrosine Kinases , Pyridines/pharmacology , Tongue Neoplasms/drug therapy , Transcription Factors/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
17.
Sci Rep ; 6: 22756, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26948654

ABSTRACT

ZnTPP (Zinc-Tetraphenylporphyrin) is one of the most common nanostructured materials, having high stability and excellent optoelectronic properties. In this paper, the fluorescence features of self-assembled ZnTPP monomers and aggregates on Au(111) surface are investigated in detail on the nanometer scale with scanning tunneling microscopy (STM). The formation of ZnTPP dimers is found in thick layers of a layer-by-layer molecular assembly on Au substrate with its specific molecular arrangement well characterized. Tip-induced luminescence shows a red shift from tilted dimers comparing with the behavior from monomers, which can be attributed to the change of vibrational states due to the intermolecular interaction and the increasing dielectric effect. The nanoscale configuration dependence of electroluminescence is demonstrated to provide a powerful tool aiding the design of functional molecular photoelectric devices.

18.
J Invest Surg ; 29(5): 254-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27010682

ABSTRACT

BACKGROUND: Endovenous laser therapy (EVLT) is safe and effective for lower limb venous ulcers. However, severe necrosis and infection in the ulcer area are contraindications of puncture and EVLT. Local bath with ozone gas has been shown to improve the condition of ulcer areas. The aim of this study was to evaluate the clinical efficacy of ozone gas bath combined with EVLT in comparison with EVLT alone for the treatment for lower limb venous ulcers. PATIENTS AND METHODS: Ninety-two patients with venous ulcers were randomized to receive ozone gas bath combined with EVLT (OEVLT group) or EVLT alone (EVLT group). In the OEVLT group, the venous ulcers were preconditioned with ozone gas bath prior to EVLT. The minimum follow-up time was 12 months. The two groups were compared in terms of complete occlusion of the treated veins, ulcer healing ratio, ratio of ulcer recurrence, patient satisfaction, complications, and side effects. RESULTS: There was no significant difference in venous occlusion between the two groups. The ratio of ulcer healing in the OEVLT group was significantly higher than the EVLT group at 12 months follow-up. Patients in the OEVLT group showed better satisfaction and a lower recurrence ratio than the OEVLT group. No severe complications or side effects occurred in either groups. CONCLUSIONS: Ozone gas bath combined with EVLT showed improved efficacy for the treatment of lower limb venous ulcers and lower recurrence ratio comparison with EVLT alone. This procedure is a safe and technically feasible.


Subject(s)
Baths/methods , Laser Therapy/methods , Ozone/therapeutic use , Varicose Ulcer/surgery , Varicose Ulcer/therapy , Aged , Combined Modality Therapy , Female , Gases/therapeutic use , Humans , Leg , Male , Middle Aged , Recurrence , Treatment Outcome , Wound Healing
19.
Phytother Res ; 30(1): 31-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26549417

ABSTRACT

This study aimed to investigate the effects of harmine hydrochloride (HMH) on digestive tumor cells in vitro and its molecular mechanism. MTT assays showed that HMH inhibited the proliferation of some human cancer cell lines and had no obvious inhibitory effects on human LO2 cells. Flow cytometry assays showed that HMH trigged G2 phase arrest in MGC-803 cells and SMMC-7721 cells, while the expression of cyclin A, cyclin B, p21, Myt1, and p-cdc2 (Tyr15) was upregulated. Flow cytometry assays also showed that the percentages of apoptotic cells were increased, the mitochondrial transmembrane potential (ΔΨm) decreased, and the cleavage of caspase-9, caspase-3, and poly (Adenosine diphosphate ribose) polymerase (PARP) were observed, the expression of Bad increased, phospho-Bad (S112) decreased, pro-caspase-8 was cleaved, and Bid (22 kDa) was cleaved. The expression of p-ERK decreased in both cells. In conclusion, these results demonstrated that HMH upregulates the expression of p21, activates Myt1 and inhibits cdc2 by phospho-cdc2 (Y15), and triggers G2 phase arrest in both MGC-803 cells and SMMC-7721 cells. It can also activate the mitochondria-related cell apoptosis pathway through the caspase-8/Bid pathway, inhibiting the ERK/Bad pathway and promoting apoptosis in both of these two cell types.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , G2 Phase/drug effects , Harmine/pharmacology , BH3 Interacting Domain Death Agonist Protein/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation , Flow Cytometry , Humans , MAP Kinase Signaling System/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Up-Regulation , bcl-Associated Death Protein/metabolism
20.
Article in English | MEDLINE | ID: mdl-26649065

ABSTRACT

Cancer-induced bone pain (CIBP) is a severe type of chronic pain. It is imperative to explore safe and effective analgesic drugs for CIBP treatment. Baicalein (BE), isolated from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi (or Huang Qin), has been demonstrated to have anti-inflammatory and neuroprotective effects. In this study, we examined the effect of BE on CIBP and the mechanism of this effect. Intrathecal and oral administration of BE at different doses could alleviate the mechanical allodynia in CIBP rats. Intrathecal 100 µg BE could inhibit the production of IL-6 and TNF-α in the spinal cord of CIBP rats. Moreover, intrathecal 100 µg BE could effectively inhibit the activation of p-p38 and p-JNK MAPK signals in CIBP rats. The analgesic effect of BE may be associated with the inhibition of the expression of the inflammatory cytokines IL-6 and TNF-α and through the activation of p-p38 and p-JNK MAPK signals in the spinal cord. These findings suggest that BE is a promising novel analgesic agent for CIBP.

SELECTION OF CITATIONS
SEARCH DETAIL
...