Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169141, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38072258

ABSTRACT

Biomass-derived carbon materials have the characteristics of a wide range of precursor sources, controllable carbon nano-dimension, large specific surface area and abundant heteroatoms doping. At present, biomass-derived carbon materials have been widely used in electrochemical energy storage devices, especially the research and development of biomass-derived carbon materials for supercapacitors has become mature and in-depth. Therefore, it is of importance to summarize the advanced technologies and strategies for optimizing biomass-derived carbon materials for supercapacitors, which will effectively promote the further development of high-performance supercapacitors. In this review, the recent research progress of biomass-derived carbon materials is provided in detail, including the selection of biomass precursors, the design of carbon nano-dimension and the theory of heteroatom doping. Besides, the preparation methods of biomass-derived carbon materials and the related processes of optimizing the electrochemical performance are also summarized. This review ends with the perspectives for future research directions and challenges in the field of biomass-derived carbon materials for electrochemical applications. This review aims to provide helpful reference information for the nano-dimensional design and electrochemical performance optimization of biomass-derived carbon materials for the practical application of supercapacitors.

2.
Mater Horiz ; 10(12): 5898-5906, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37870084

ABSTRACT

Taking the advantages of hierarchical nitrogen-doped carbon nanocages (hNCNCs) with nanocavities for encapsulation and multiscale micro-meso-macropores/high conductivity for mass/electron synergistic transportation, a conversion-type CuO anode material is confined inside hNCNCs for potassium storage. The so-obtained yolk-shelled CuO@hNCNC hybrids have tunable CuO contents in the range of 11.7-63.7 wt%. The unique architecture leads to the loss-free pulverization of the active components during charge/discharge, which increases the surface-controlled charge storage, shortens the K+ solid diffusion lengths with an enlarged K+ diffusion coefficient, and meanwhile enhances the rate capability and durability. Consequently, the optimized CuO@hNCNC delivers a high specific capacity of 498 mA h g-1 at 0.1 A g-1 and 194 mA h g-1 at 10.0 A g-1 based on the total mass of CuO@hNCNC, and a long-term stability. The capacity based on the CuO active component reaches a record-high 522 mA h g-1 at 1.0 A g-1 after 2000 cycles, which is ca. 2.5 times the state-of-the-art value in the literature. The evolution of the cycling performance with CuO loading is well understood based on the loss-free pulverization. This study demonstrates a new strategy to turn the generally harmful pulverization of active components into a beneficial factor for K+ storage, which paves the way for exploring high-performance anodes for rechargeable batteries.

3.
ACS Nano ; 17(14): 13659-13671, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37418375

ABSTRACT

Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.

4.
J Colloid Interface Sci ; 530: 579-585, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30005234

ABSTRACT

Architecture of electrode materials plays an important role in achieving favorable electrochemical performance via providing fast electronic transport pathway and shorten lithium ion diffusion distance. Herein, ultrafine CoP nanoparticles were successfully embedded in carbon nanorod, which were grown on the biomass-derived carbon (BC). When applied as anode materials for lithium-ion batteries, these CoP@C/BC displayed capable specific capacity, remarkable rate ability and outstanding long-term cycling performance. The capacity was governed by combination of diffusion-controlled and capacitive processes, according to quantitative kinetic analysis. The good electrochemical performance is attributed to hierarchical construction of nanosized CoP embedded in carbon nanorod and BC with high conductivity composite, which relieve the volume changing of CoP and provide large electrode/electrolyte interface. The present design of hierarchical architecture can be extended to other transition metal-based oxides, sulfide and phosphide electrode materials for high performance alkali metal ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...