Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 80: 117176, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36709571

ABSTRACT

A series of 2-oximino-2-indolylacetamide derivatives were designed, synthesized and evaluated for their antitumour effects. Among them, 4d exhibited the most potent antiproliferative effect in vitro on the tested human cancer cells. Additionally, 4d significantly induced cell apoptosis, caused mitochondrial dysfunction, promoted Bax, cleaved-PARP and p53 expression and inhibited Bcl-2 expression in 5-8F cells. Moreover, 4d remarkably promoted autophagosome formation, leading to cell apoptosis. Further investigation indicated that 4d could trigger cell death through cell ferroptosis, including increased ROS generation and lipid peroxidation and decreased glutathione peroxidase 4 (GPx4) expression and glutathione (GSH) levels. More importantly, 4d induced 5-8F cell death by activating ROS/MAPK and inhibiting the AKT/mTOR and STAT3 signalling pathways. Interestingly, 4d significantly suppressed tumour growth in a 5-8F cell xenograft model without obvious toxicity to mice. Overall, these results demonstrate that 4d may be a potential compound for cancer therapy.


Subject(s)
Antineoplastic Agents , Ferroptosis , Humans , Animals , Mice , Reactive Oxygen Species/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Glutathione/metabolism , Autophagy
2.
Fitoterapia ; 162: 105289, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058472

ABSTRACT

The chemical investigation on Corydalis balansae resulted in the isolation of three previous undescribed compounds (1, 10, and 11) and 17 known compounds. Compound 1 and 2 were obtained as two lignanamide dimers, and compound 11 had a spiro [benzofuranone-benzazepine] skeleton, which was found in Corydalis for the first time. The structures of new compound were determined by the detailed analysis of 1D/2D NMR, UV, and IR data. Absolute configurations of compounds 10 and 11 were defined by their crystal X-ray diffraction data and calculations of electronic circular dichroism (ECD). The CCK-8 method was used to assay the inhibition effect of all the compounds on the growth of Hela, MGC-803, A549, and HepG2 cancer cells. Compound 2, 13, and 14 showed moderate inhibitory activity against the tested cell lines. Compound 2 exhibited potential antitumor activity against MGC-803 cells with an IC50 value of 20.8 µM, while the positive control etoposide was 17.3 µM. Furthermore, results from the cellular-mechanism investigation indicated that compound 2 could induce S-phase cell-cycle arrest and MGC-803 cells apoptosis, which was triggered by the up-regulation of PARP1, caspase-3 and -9, Bax, and down-regulation of Bcl-2. The 2-induced strong apoptosis indicated that compound 2 had good potential as an antitumor lead compound.


Subject(s)
Alkaloids , Corydalis , Alkaloids/chemistry , Alkaloids/pharmacology , Benzazepines , Caspase 3 , Corydalis/chemistry , Etoposide , Molecular Structure , bcl-2-Associated X Protein
3.
Phytomedicine ; 102: 154192, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35636179

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of malignant squamous cell tumour originating from the nasopharynx epithelium. Pentagalloylglucose (PGG) is a natural polyphenolic compound that exerts anticancer effects in many types of tumours. However, the role and underlying mechanism of PGG in NPC cells have not been fully defined. PURPOSE: This study aimed to investigate the anticancer activity of PGG as well as the potential mechanism in NPC cells. METHODS: The effects of PGG on the proliferation, apoptosis and cell cycle distribution of CNE1 and CNE2 cells were assessed by MTT and flow cytometry assays. Cell migration was evaluated using wound healing and transwell assays. The expression of microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Western blotting was used to explore the levels of related proteins and signalling pathway components. Furthermore, the effects of PGG on NPC cell growth were analysed in a xenograft mouse model in vivo using cisplatin as a positive control. RESULTS: PGG dose-dependently inhibited the proliferation of CNE1 and CNE2 cells. PGG regulated the cell cycle by altering p53, cyclin D1, CDK2, and cyclin E1 protein levels. PGG induced apoptosis and autophagy in NPC cells and elevated the Bax/Bcl-2 ratio and the protein levels of LC3B. Moreover, PGG decreased NPC cell migration by increasing E-cadherin and decreasing N-cadherin, vimentin and CD44 protein levels. Mechanistically, PGG treatment downregulated p-mTOR and ß-catenin expression but upregulated p-p38 MAPK and p-GSK3ß expression. In addition, PGG significantly inhibited NPC cell tumour growth and lung metastasis in vivo. CONCLUSION: PGG may suppress cell proliferation, induce apoptosis and autophagy, and decrease the metastatic capacity of NPC cells through the p38 MAPK/mTOR and Wnt/ß-catenin pathways. The present study provides evidence for PGG as a potential therapy for NPC.


Subject(s)
Hydrolyzable Tannins , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Hydrolyzable Tannins/pharmacology , Mice , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , beta Catenin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...